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Abstract: With the increasing amount of digital journal 
submissions, there is a need to deploy new scalable 
computational methods to improve information 
accessibilities. One common task is to identify useful 
information and named entity from text documents 
such as journal article submission. However, there are 
many technical challenges to limit applicability of the 
general methods and lack of general tools. In this paper, 
we present domain informational vocabulary extraction 
(DIVE) project, which aims to enrich digital publications 
through detection of entity and key informational words 
and by adding additional annotations. In a first of its 
kind to our knowledge, our system engages authors of 
the peer-reviewed articles and the journal publishers 
by integrating DIVE implementation in the manuscript 
proofing and publication process. The system implements 
multiple strategies for biological entity detection, 
including using regular expression rules, ontology, and 
a keyword dictionary. These extracted entities are then 
stored in a database and made accessible through an 
interactive web application for curation and evaluation 
by authors. Through the web interface, the authors can 
make additional annotations and corrections to the 
current results. The updates can then be used to improve 
the entity detection in subsequent processed articles in 
the future. We describe our framework and deployment 
in details. In a pilot program, we have deployed the first 

phase of development as a service integrated with the 
journals Plant Physiology and The Plant cell published 
by the American Society of Plant Biologists (ASPB). We 
present usage statistics to date since its production on 
April 2018. We compare automated recognition results 
from DIVE with results from author curation and show the 
service achieved on average 80% recall and 70% precision 
per article. In contrast, an existing biological entity 
extraction tool, a biomedical named entity recognizer 
(ABNER), can only achieve 47% recall and return a much 
larger candidate set.

Keywords: entity extraction, digital curation, digital 
library, machine learning, ontology, text mining, natural 
language processing

1  Introduction
Over the past decade, advances in information technology 
have brought profound continuing transformations in 
media publishing industry including greatly increased 
content format, empowering authors with self-publishing 
and expanding accessibility with open access (Björk, 2017). 
In scholarly journal publishing and academia research 
community, hundreds of new journal titles and topics are 
introduced in each decade (Tenopir, C. & King, 2014). One 
notable change is the increasing volume of digital content. 
Not only new journals are created in a digital format but 
also many publishers have begun to digitize previously 
printed journals. The digital version of articles has 
increased accessibility and speeded up delivery of content 
to readers. New functionality can be implemented using 
the digital publishing process to enhance the traditional 
scholarly communication channel (Ware & Mabe, 2015). 
Among many challenges brought by digital publishing, 
improving the accessibility and use of domain knowledge 
embedded in the journal article is a central focus of this 
paper. As new technology keeps accelerating scientific 
discovery, the number of new scientific publications 
continues to rise accordingly. To keep up with the constant 
influx and volume of new information, automatically 
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analyzing these growing corpora of technical documents 
is a natural solution. Therefore, there is a pressing need 
to develop computational methods and tools that can 
enrich the information content of digital publications, 
improve its accessibility and utility, and facilitate the 
readers’ understanding by creating links between journal 
articles and relevant database entities during the article 
production process. To address this problem, we have 
designed and implemented a system called domain 
informational vocabulary extraction (DIVE) and deployed 
it as a cloud-based service in collaboration with the 
American Society of Plant Biologists (ASPB) (Xu, 2016; 
Gupta, 2018).

ASPB is a professional society established in 1924 and 
devoted to the plant sciences. ASPB manages and publishes 
two premium journals in the field of plant biology, Plant 
Physiology and The Plant Cell. Both journals are highly 
cited and accessed by readers from all over the world. 
Over the years, the areas of interest of these journals have 
evolved and expanded to include cellular and molecular 
biology, genetics, development, evolution, physiology, and 
biochemistry. Like in many scientific fields, publication is 
an important form of scholarly communication. Researchers 
publish their research findings in academic journals 
to share novel approaches and maximize knowledge 
creations (Chang, 2008). Therefore, new ideas and new 
terminologies are constantly invented and presented 
without precedents through journal publications. Owing 
to its technical depth and rich informational content, a 
scientific publication often requires significant amounts of 
time and effort for readers, domain experts, and curators 
to fully comprehend and make intelligent judgments. In 
fact, journal articles are often the first textual appearance 
of new terms, concepts, ideas, and discoveries that are 
without precedence. Synthesizing information from a large 
corpus of journal articles or technical documents requires 
a great deal of time and nontrivial effort to understand and 
digest the contents and also demands significant expertise 
from the reader. Capturing and collecting key domain 
information embedded in the article in a timely manner can 
improve article management and increase their readability 
and accessibility.

DIVE uses text-mining methods for entity extraction 
and utilizes cyberinfrastructure (CI) for online processing 
and service support. The analysis tool uses an ensemble 
of methods including keyword dictionary matching, 
regular expression rules, and cross-checking against 
known ontologies. The results of the extracted biological 
entities are then stored in a database and made accessible 
through an interactive web application for curation and 
evaluation by authors and other domain experts. Through 

the web interface, a user can make additional annotations 
and corrections to the current results. The updates are 
stored and managed via the relational database for 
future improvements to the entity detection process. 
The service includes several components: automated 
informational vocabulary extraction based on existing 
domain ontologies, experts’ validation and curation, 
and integration of results using the formal publication 
process. The contribution of the DIVE includes integration 
of CI for publishing pipeline, open extensible framework, 
incorporation with existing domain ontologies and other 
information sources, and an interface bridging author and 
knowledge curation.

The system can be integrated and benefits the entire 
life cycle of the digital publication, from initial manuscript 
submission to publishing the article and presenting 
information to readers. At the initial manuscript 
submission stage, the manuscript can be processed to 
extract known key informational vocabulary, such as 
biological entities, as well as to identify potential new 
technical words. This information may be used by editors 
to identify appropriate reviewers for the manuscript. After 
the article has been accepted for publication, additional 
information about the key informational words, such as 
links to external repositories or reference sites, may also be 
embedded during the prepublication production process 
to enrich the information content and accessibility. 
Publication curators may also leverage the information for 
curation. New information defined and verified by experts 
may also be injected to other information resources, such 
as Planteome (Cooper & Jaiswal, 2016). In this paper, we 
present our development and deployment experiences 
of DIVE services with ASPB. We detail the design and 
implementation of the system including the entity 
detection, extraction pipeline, and the web interface, 
and we also present a use case demonstration. Additional 
features are under development.

2  Background and Related Work
The work presented here is related to several topic areas 
including named entity recognition in general and 
biological domains, journal publishing practice, biological 
ontology development, and using CI as a service. 

2.1  Entity Recognition Methods and Tools

Entity recognition has originated from a classic problem 
in database research for detection of duplicate records 
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known as entity resolution (Naumann & Herschel, 2010; 
Elmagarmid et al., 2007). In large database systems in the 
real word, there are duplicate representations of the same 
object, also known as “entities” in relational databases. 
These duplicate records may not be exactly the same or 
share a common key reflecting their connection in the 
system. The value of each record could only be partially 
matched to other records or presents certain errors that 
make detecting these duplicates a difficult task. A typical 
entity resolution process includes data preparation, which 
transforms data into a uniform model; field matching, 
which breaks records by field and defines similarity 
models between fields; and duplicate record detection, 
which utilizes data mining techniques such as clustering 
and learning classification, to identify possible duplicated 
records (Herzog et al., 2007). Over the years, there have 
been a number of studies in this area (Köpcke et al., 2010; 
Christen, 2012). Entity resolution applications have also 
broadened into fields such as social network analysis 
and web data mining (Bilgic et al., 2006; Bhattacharya & 
Getoor,2007; Getoor & Diehl, 2005).

In text mining, named entity recognition is a common 
task for extracting information (Pasca et al., 2006; 
Grishman & Sundheim, 1996). The goal of the task is to 
identify and classify phrases in the corpus to predefined 
categories, such as names of persons, organizations, 
locations, times and dates, numerical values, and 
percentages (Nadeau & Sekine, 2007). Developing 
systems to automatically extract named entities are 
motivated through several contests and challenges and 
has become a research topic since early 2000s (Sang & 
Meulder, 2003; Doddington et al., 2004; Santos et al., 
2006). Recognition of named entities requires leveraging 
linguistics grammar-based models. Early works were 
centered on handcrafted and rule-based algorithms. 
Rule-based systems can exploit features within the 
specific language to improve the system performance 
(Shaalan, 2010). Although a rule-based system can be 
highly efficient for a specific domain, the successes 
rely on integration of domain knowledge, which can be 
expensive to develop and hard to transfer.

Machine learning techniques have been adopted to 
learn features automatically in recent years. Supervised 
learning methods require a curated training data in which 
named entities have been identified and properly labeled. 
A typical workflow starts with processing the raw text to 
generate various features, such as annotations, position, 
and part-of-speech tags. Supervised learning methods 
are then used to derive an inference model based on the 
training dataset. Various learning methods have been 
explored over the years, including the Hidden Markov 

Model (Wang et al, 2014), support vector machine (Saha 
et al., 2010), maximum-entropy Markov model (MEMM)-
based systems (Saha et al., 2009), logistic expression-
based systems (Ek et al., 2011), and conditional random 
field (CRF) (Sutton & McCallum, 2012; Majumder et al., 
2012; McCallum & Li, 2003). Just recently, deep neural 
network for named entity recognition has also been 
proposed (Dernoncourt et al., 2017). NeuroNER uses a 
deep recurrent neuron network to identify and classify 
named entities. However, supervised learning methods 
require a considerable amount of training data, which may 
be difficult to achieve. Unsupervised and semi-supervised 
learning methods are also proposed (Bhagavatula et 
al., 2012; Thenmalar et al., 2015). For more details and 
other approaches, readers can refer to a recent survey 
(Goyal et al., 2018). Still, successful solutions are often 
tightly coupled with the underlying language models 
and domains. It remains as a challenging problem to port 
models and algorithms working well for one domain to 
another problem domain. Substantial amounts of efforts 
have focused on algorithm improvements in a well-
tuned, domain-specific scenario in practice. Thus far, no 
universal algorithm exists that can work reasonably well 
across a broad swath of domains.

The flourish of different entity recognition methods 
has resulted in various tools and libraries for entity 
recognition in practice. Two well-known, open-source, 
state-of-the-art libraries for general domains are spaCy 
and Stanford Named Entity Recognizer. The spaCy is a 
python package that provides comprehensive natural 
language processing (NLP) support. In the latest version, 
the implementation also leverages convolutional neuron 
network to improve parsing and inference (Kiperwasser 
& Goldberg, 2016). Stanford Named Entity Recognizer is 
a java library and implements linear chain CRF sequence 
mode (Chen & Manning, 2014). Both libraries include 
prebuilt general models for English language models and 
support training of new models with customized labels 
from the training dataset. In addition to these two models, 
ensemble approaches combining multiple techniques 
have also been reported for specific use cases in practice. 
Liu and Zhou proposed a system using linear CRF and 
cluster-based approach for recognizing entities from 
English tweets (Liu & Zhou, 2013). Ensemble classifiers 
and rule-based approaches have been combined in 
entity recognition in other languages (Ekbal & Saha, 
2011; Guanming  et al., 2009). Rule-based approach has 
also been used in conjunction with CRF techniques for 
biomedical domains (Li et al., 2009).

Named entity recognition in the biomedical domain 
has been a major problem of interest along with the 
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research for general domain (Kim et al., 2004). Earlier, 
biological entity recognition focused on gene and protein 
detection (Tanabe et al., 2005; Shen et al., 2003; Mihăilă 
& Ananiadou, 2014). The categories of interests have 
expanded to general technical terminologies used in 
biology, including gene names, protein names, biological 
sequences, organisms, specimen, mutant, and taxonomy. 
Successful techniques developed for the general domain 
have been adopted over the years. A Biomedical Named 
Entity Recognizer (ABNER) is one of the earliest tools 
for extracting biomedical named entities using CRFs 
(Settles, 2005). The research efforts have been fueled by a 
number of challenges and evaluation datasets advancing 
application of NLP in biomedicine (Huang et al., 2015; 
Pyysalo et al., 2007). Past research has explored both 
supervised methods (Tsai et al. 2006; Campos et al., 
2013; Ju et al., 2011), and the more recent one focuses on 
unsupervised methods to detect and annotate biological 
entities (Zhang & Elhadad, 2013). Recently, deep learning 
techniques have also been explored to better represent 
word embedding for biomedical NLP (Habibi et al., 2017; 
Chiu et al., 2016). Recent successes have been found in 
systems utilizing ensemble classifiers and models. Zhu 
and Shen combined support vector machine and CRF 
approaches (Zhu & Shen, 2012). Habibi et al. proposed an 
approach, long short-term memory network (LSTM), using 
both deep neuron network and statistical models (Habibi 
et al., 2017). Despite many efforts made over the years, 
named entities recognition in the biological domain is 
still a challenging problem, and it is hard to achieve good 
performance as in the general domain.

2.2  Journal Publishing Standards

Over the years, publishers have gradually adapted to using 
structured documents for online publications in order to 
enrich their information content. A digital publication 
can be curated with additional annotations and external 
links. A commonly used standard for this purpose is 
Journal Article Tag Suite (JATS) (Huh, 2014; Huh et al., 
2014). JATS is a NISO standard used by National Center 
for Biotechnology Information (NCBI). JATS refers to a 
superset of well-defined XML elements and attributes that 
may be used to tag journal articles. An article model (also 
referred to as a tag set) may be formed by using a subset 
(or all) of tags available in JATS. It is possible to define 
whole collection libraries of various article models using 
this standard. JATS is therefore widely used to annotate 
articles when creating digital article repositories to be 
hosted on the Internet. These annotations are, however, 

largely created by hand, a practice that is not scalable to 
large collections.

By virtue of our closed-loop architecture, we are 
able to collect annotation feedback from users via our 
web interface. In other words, this means that we can 
plug this information back into the JATS standard and 
introduce richer annotation information directly from 
sources (reviewers/authors/editors) that qualify as the 
relevant domain experts for that article. This workflow 
may be neatly integrated into the review cycle for a 
specific publication venue (journal/conference). This is 
also a highly scalable approach with the ability to produce 
annotations with significant qualitative improvements, 
which can then be curated.

2.3  Biological Ontology Development

Ontology is a set of controlled vocabularies with semantic 
to provide a formal encoding of concepts within a domain. 
The concepts and relations captured in ontology are used 
to form foundations for knowledge representation and 
management. While domain experts often define domain 
ontologies manually, the process of building ontologies 
requires extraction of concepts and their relations from 
existing data that aligns well with the task of entity 
recognition. Therefore, results from entity extraction 
can also be used to populate existing ontologies (Etzioni 
et al., 2005; De Boer et al., 2006; Song et al., 2009). 
Consequently, vocabularies in the existing ontology also 
provide an excellent source and evidence for named entity 
recognition.

In biology, there exist a number of ontologies for 
different bodies of knowledge. Gene ontology is probably 
the most well-known biological ontology among others 
(Ashburner et al., 2000). Gene ontology defines terms 
and relations among genes across all species. It forms a 
hierarchical representation with three major categories: 
biological process, molecular function, and cellular 
component. The number of biological ontologies is 
growing rapidly over the years. New ontologies are 
developed for individual species or biological functions. 
Our work leverages ontologies maintained by Planteome, 
which is an international collaboration effort to develop, 
enrich, and use plant ontologies for data cross-references 
and annotations (Cooper L et al., 2017). The Planteome 
project (http://www.planteome.org) provides a suite of 
references and species-specific ontologies for plants and 
annotations to genes and phenotypes. Ontologies serve 
as common standards for semantic integration of a large 
and growing corpus of plant genomics, phenomics, and 
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genetics data. The reference ontologies include the Plant 
Ontology, Plant Trait Ontology, and the Plant Experimental 
Conditions Ontology developed by the Planteome project, 
along with the Gene Ontology, Chemical Entities of 
Biological Interest (ChEBI), Phenotype and Attribute 
Ontology, and others. The project also provides access 
to species-specific crop ontologies developed by various 
plant breeding and research communities from around the 
world. All the Planteome ontologies are publicly available 
and are maintained at the Planteome GitHub site (https://
github.com/Planteome) for sharing and tracking revisions 
and new requests.

2.4  NLP as a Service

Since the number of journal articles published each 
year has significantly increased in the past decades, 
information management services, such as those provided 
through libraries and content creators, are seeking new 
ways to improve the content accessibility. New text-mining 
methods are adopted to provide better search experiences 
for users by offering more search categories and rankings. 
Many researchers now gradually rely on search service 
providers, such as Google Scholar, more than using 
traditional interfaces provided by content managers to 
identify new relevant articles. Along with publications, 
there are also new concepts; data and experiment details 
need to be annotated and cross-referenced for better 
utilizations. There is an ongoing need of providing a 
centralized environment for comprehensive information 
and knowledge access.

Within the field of plant biology, there are several 
ongoing efforts on integrating comprehensive information 
from diverse sources and making them accessible through 
a web portal interface for targeted research communities. 
Arabidopsis Information Portal (Araport) is a project 
dedicated to Arabidopsis research (https://www.araport.
org/) (Swarbreck et al., 2007; Krishnakumar et al., 2014). 
The project integrates information on Arabidopsis genes 
and their function annotations from various data sources 
and makes all information accessible through a web portal. 
Other examples include Gramene (www.gramene.org) and 
Planteome (Tello-Ruiz et al., 2017; Cooper L et al., 2017). 
The Gramene database is freely available for download 
and used as long as Gramene is cited as the source. This 
includes the tools available at Gramene including but not 
limited to RiceCyc, CMap Viewer, Gramene Mart, and the 
Genome Browser (Tello-Ruiz et al., 2017). A core-processing 
task common to above projects of information integration 
is the need of NLP and text mining. In practice, these 

needs are met through customized software development 
process due to the limited transferability described in the 
previous section.

With the increasing amount of new data and expanding 
vocabularies, a scalable computing service that can be 
adapted to different domains and use cases can directly 
facilitate this information integration processes. CI, which 
refers to large shared online research environments, 
has been increasingly used in open science research 
and enables breakthrough discovery in many domains, 
including academic libraries for accommodating data 
and analysis within their services and collections. Science 
as a service is a new approach that has emerged along 
with the data-driven science (Grossman et al., 2016). This 
approach is a step up from the previous infrastructure-
as-a-service (IaaS) model, through which the physical 
and/or virtual resources are allocated to users upon 
request. The IaaS model has limited interactive analysis 
support and does not provide support of graphical 
user interface. It limits usability of the CI resources and 
distances itself from users in noncomputational fields. 
In science-as-a-service model, common analysis tasks 
can be abstracted and deployed as a service module. The 
service module has an easy to use interface for end users 
and is backed up by powerful remote computing resources 
for fast performance. Furthermore, analysis can often be 
facilitated with comprehensive user environment and 
visualization support. One such example is the CyVerse 
project. CyVerse provides life scientists with powerful 
computational infrastructure to handle huge datasets and 
complex analyses, thus enabling data-driven discovery. 
It has an extensible platform that provides data storage, 
bioinformatics tools, image analyses, cloud services, 
application programming interface (APIs), and more 
(Merchant et al. 2016; Goff et al. 2011). Through CyVerse 
APIs, hundreds of applications have been developed to 
simplify the process of running analysis with remote CI. 
However, providing NLP as a service using CI is rarely 
seen. Here, we are motivated to develop a framework for 
named entity recognition service that can later be adapted 
across different domains.

3  Framework Design and 
Implementation
We propose a pluggable and flexible framework that 
can ingest available articles while fronted by a web 
service readily available to users. The framework helps 
curators to identify new concepts of interest emerged 
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from latest publications. This framework can facilitate 
integration of different approaches of entity recognition 
and migration across different domain use cases. The 
proposed architecture enables us introducing successful 
innovations in the detection pipeline into this framework. 
Our approach closes the feedback loop from users through 
recording author’s annotation inputs, which can be used 
to improve processing workflow for future iterations.

3.1  Motivation

Our work is directly motivated by the need of providing 
better access to new journal publications. However, 
existing entity extraction methods are not suitable for 
this problem. General named entity recognition methods 
often have technical challenges in detecting entities 
that lie in boundary, long-range semantic constructs, 
co-reference resolution, and numerous others. There are 
several additional factors causing underperformance 
of the entity recognition: 1) intrinsic complexity of 
biomedical entities’ structure; 2) ever increasing new 
terminologies and concepts; and 3) lack of well-curated 
training datasets. Entities in biological journals can have 
complicated structure and naming schemas. Nested 
structure and abbreviations are also common in biological 
literature. So far accuracy has been improved largely by 
cross-referencing with carefully curated dictionaries 
and ontologies that often require significant efforts to 
maintain. At the same time, the definition of named entities 
in biology are constantly evolving and expanding with 
new relevant phrases that are meaningful in the context 
of the domain of the article (e.g., names of methodology, 
equipment, and drug). Owing to these reasons, although 
existing named entity recognition methods may detect a 
lot of existing biological entities, recognized entities are 
often different from what authors think important. This 
shortcoming is further confirmed with comparison results 
between our approach and ABNER, a program specifically 
designed for biological entity extraction (Section 4).

Furthermore, our work not only is motivated by 
recognized entities from new publications but also is 
used as a tool to discover and curate new vocabulary. The 
quality of curated training data has direct impact on the 
efficiency of model inferred from the learning process. 
However, curating high-quality training dataset to keep 
up with increasing volume of articles and concepts is 
another time-consuming process that requires substantial 
efforts from human experts. It is an ongoing research area 
explored jointly by the domain scientists and the NLP 
community in hope of yielding newer algorithms that are 
less dependent on human-curated sources.

The proposed framework addresses these limitations 
through an ensemble method approach. By integrating 
multiple models for detection, the system can detect 
more concepts embedded within the documents. The 
framework is designed to utilize use case-specific 
knowledge and rules to improve the detection. Domain-
specific knowledge can be integrated into the framework 
as Rules. For the use case presented here, we have 
leveraged existing biological ontologies and publication 
formatting information. The framework also includes user 
interface to enable human expert validation and curation. 
All curation and correction made by experts are tracked 
and stored in a database for improving entity detections 
in the future.

3.2  Entity Detection Architecture Overview

Figure 1. Overview of proposed journal processing framework

The processing workflow for identifying biological entities 
from journal articles is illustrated in Figure 1. There 
are three major steps: text extraction, entity candidate 
extraction, and candidate assessment. For this specific 
use case, the input is a structured document, which 
contains content and metadata of a journal article. The 
entity candidate extraction phases contain a number of 
implemented rules and models to infer potential phrases 
of interests. These candidates are to be further assessed 
for importance and validated through a graphical web 
user interface. All results, including entity inference, 
assessment, and human validation results, are stored in 
a relational database.

3.2.1  Text Extraction

The text extraction processes the input structured 
document tagged by JATS. During this step, the input 
document is processed into two parts: textual content of 
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journal article and the structure of the journal document. 
The textual information data part is a list of string 
representation of the body of text included in the journal 
articles. The structural data include metadata information 
presented at the input document, such as section mark 
and special formatting mark. Each string is a sentence or 
line from the original document. A mapping is maintained 
between the textual value and metadata information by 
their global positions in the original documents. This dual 
data structure allows for efficient text processing of the 
publication content while still being able to easily retrieve 
the metastructure around a particular set of words during 
the subsequent steps of processing. To separate the textual 
context and presentation format and process separately 
also enables the framework to be extended in the future for 
additional input text formats. The subsequent processing 
can independently utilize each part separately or jointly 
based on model requirements and availability. Therefore, 
unstructured text without structure information can also 
be processed in the same framework.

3.2.2  Entity Candidate Detection

A feature of the processing framework is to support 
ensemble methods for entity detection. The framework 
is designed to be able to utilize existing generic models. 
Domain-specific detection can be encoded as rule-
based models for detection. The detection rules can be 
defined based on various heuristics and requirements 
such as publishing requirements, naming conventions, 
and domain ontologies. New rules can be added on 
demand over time. Currently, there are four types of rules 
implemented in the DIVE: regular expression rules, word 
dictionary, publishing convention, and ontology rules.

Each rule can be defined as a regular expression 
and used for matching the candidate word. The regular 
expression rules utilize common naming conventions to 
identify biological entities, such as gene name, protein 
name, molecule structures, and chemical compound. The 
word dictionary rule consists of a predefined list of words 
that should be included or excluded in the candidate lists. 
The publication content is searched against the list at run 
time first. Both regular expression rules and word list are 
created based on inputs from biologists in the research 
team. The publishing convention rules are used to identify 
words that are in a special format, such as in italic, or in a 
particular component of the publication, such as a figure 
legend. The enclosing tags of the candidates are used to 
define each rule. The publishing convention rules are 
created based on the suggestions from editors at ASPB. 

Additional rules can be added by specifying additional 
tag values or by using naming conventions to detect 
entities like species names. The ontology rules utilize five 
biological ontologies including gene ontology (Ashburner 
et al., 2000), plant ontology (Jaiswal et al., 2005), plant 
trait ontology (Arnaud et al., 2012), plant environment 
condition ontology (Jaiswal & Cooper, 2018), and ChEBI 
(Degtyarenko et al., 2007). Rules are also detailed in the 
code.

3.2.3  Entity Candidate Assessment

By applying the extraction rules listed earlier, a set of entity 
candidates can be detected from the input document. 
Some candidates might be detected by multiple rules. 
Different detection rules also have different accuracy. 
Ontology file and dictionary-based approaches have the 
highest certainty. Candidates only identified by other 
rules need further validation. We currently implemented 
two automatic validation mechanisms. One is based on 
the previously validated results; the other one is based 
on co-location with other confirmed entities. However, 
the primary method of validation is by domain expert 
evaluation through the web interface, which is detailed in 
Section 3.2.

3.2.4  Entity Management and Versioning

The results from entity extraction processing workflow are 
stored in a relational database and served as data store for 
the web application. There are two major sets of table in 
the database, the Files table and the Entities table.

The Files table represents a publisher-generated XML 
file for a manuscript containing metadata information 
annotating various parts of the manuscript text. It has the 
following fields:

{Filename, Title, Abstract, Externally pointing DOI link}

The Entities table represents entities discovered by our 
entity extraction algorithms using various methodologies 
mentioned earlier (e.g., ontology, regex, and keyword-
based retrieval). The basic information of each entity is 
stored with following fields:

{Entity Name, Entity Type, XRef, Filename}

Entity name may consist of multiple words. An entity 
name can appear multiple times in the database if it exists 
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in different publications. XRef refers to a link to well-
known comprehensive databases containing additional 
domain-specific information. There are also additional 
fields to track specific information about each entity, such 
as the species it is associated with and locations where 
it appears in the publication. Additionally, the database 
also records user revisions through following fields:

{Version, Timestamp, Change Type, IP}

We use version numbers to track changes made to an 
entity by algorithm or by the user. Timestamp and types 
of change of each update are recorded accordingly. The 
IP address is used to indicate who made the updates. 
Collectively, all of these help us track a chain of modify/
delete events in the life of an extracted entity in the 
database. Such patterns can be retrieved and used as 
feedback to future algorithm iterations and learning. The 
database presently being used is SQLite. This is a flat file 
database that offers relational semantics. It was chosen 
because it makes our prototype a self-contained and 
easily deployable unit. This could be easily transitioned to 
any popular relational database such as PostgreSQL and 
MySQL for larger scale use cases.

3.3  Web Interface Design

We chose Django (v 1.10) to implement the web front end 
in our prototype. Based on Python, the web front is easily 
programmable, extensible, and pluggable with multiple 
popular databases. It forms the presentation layer of this 
system, relying on the back end code to run the entity 
extraction algorithms from the manuscript and to transfer 
the results in a JSON format. Let us use an example 
to illustrate the features of our web interface, thereby 
displaying the various views, layouts, and functions 
available. Our prototype includes 609 manuscripts from 
the journal Plant Physiology.

The first view (Figure 2) is a paginated list of all the 
articles – i.e., xml files. There are additional columns 
pointing to an external DOI reference to a copy of the 
article itself and the article title.

The next view (Figure 3) is reached by clicking on the 
file name (e.g., 1002.xml in Figure 2). The web interface 
runs the backend code for entity extraction and presents 
the results to the user based on the schema described 
in the previous section. The layout consists of the title 
at the very top and a scrollable text box that contains 
the abstract extracted from the manuscript. As these are 
provided, the user has some context knowledge of the 

actual manuscript accompanying the presented meta 
information that is extracted or generated by the backend 
algorithms. The XRef column also gives a link pointing to 
the Planteome ontology database.

Staying with the same example, the user control button 
for editing a record directs to the edit page where we see 
the layout of title and abstract at the top (Figure 4). These 
are again provided for context. Among other additions, 
we also see the editable fields of this record where a user 
may correct or enter new values. A dynamic search box 
can be used to search for and add new species into the 
species menu, if the appropriate species was not detected 
or inferred from the article. This search box uses an online 
service from NCBI to provide a very comprehensive list of 
options as the user dynamically types into it. Sentences of 
occurrence of this entity are extracted from the manuscript 
with the entity name highlighted in yellow. This again 
provides better, almost complete context information for 
this entity, as per the manuscript text.

3.4  Service Integration and Implementations

DIVE has been integrated into the publication pipeline 
of two plant biology journals, namely, The Plant Cell 

Figure 2. Paginated view of collection

Figure 3. Interface for exploring entities in a publication
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(ASPB, 2018b) and Plant Physiology (ASPB, 2018c), 
from ASPB (ASPB, 2018a). A company named Sheridan 
Journal Services develops and runs the publication and 
proofing software for these journals. The architecture 
of the integration is shown in Figure 5. To enable this 
integration, DIVE functionality was exposed to the 
publication software as a web service with two endpoints.
•	 Article Endpoint
	 This endpoint receives two HTTP POST requests 

related to the article.
o	 Article Push request: This request is used to push a 

new article into DIVE. An article may also be pushed 
multiple times to DIVE during the publication process 
to incorporate proofing edits and corrections. This 
request contains the location of the cloud storage 
service from where this article may be retrieved. This 
request also contains metadata information about the 
article file being pushed for verification purposes.

o	 Pull Curation request: This request is to pull a 
summary of curation information from DIVE about 
the article. It is usually done at the end of the proofing 

process and is embedded into the final proof of the 
article.

•	 Article Landing Page Endpoint
	 This endpoint is the landing page of the article. It is 

where the extracted entities for the article may be 
viewed and curated. This is where the authors are 
directed during the proofing process of their article 
to curate the terms. This page contains instructions 
of author curation actions and the list of entities 
extracted with meta information. The authors may 
either verify its accuracy or do curation actions of 
edits, additions, or deletions to this information. The 
extracted result is appended at the end of the final 
proof version of the publication with cross-references 
to other known ontologies, to improve its accessibility 
and discoverability. These contributions are also 
tracked by the DIVE backend database and can serve 
to improve the information quality and future entity 
detection for DIVE.

3.5  Additional Features

Expert users may also use our search interface to search 
for other articles within the corpus that contain an entity 
they are interested in. This can further help the articles 
discoverability among other users with overlapping 
domain expertise and interest. An example of the search 
interface is shown in Figure 6. The articles are listed with 
their title, journal name, and other metadata like a DOI 
link, which leads to a site hosting a copy of the article.

We are working on supporting further analysis on 
the extracted results within our framework. One example 
is to analyze the associations among extracted entities. 
Figure 7 shows top 20 inference rules based on all 
ontology terms extracted from the collection. Each label 
indicates a frequent item set found in the collection. The 
directional arrow indicates an inference on co-occurrence 
between two item sets. The shade of the directional arrow 
indicates the confidence level of the rule. Such visual 
representations of inferred association between diverse 
entity types could tremendously aid a researcher in 
forming insights. This also has potential to be a similarity 
metric between articles that could help editors gage the 
novelty of a new article submission.

Figure 4. Interface for showing/editing entity details

Figure 5. Integration architecture with publication pipeline
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4  Usage Statistics and Evaluations
The DIVE web service integration has been deployed into 
production since April 2018 to process submissions to The 
Plant Cell and Plant Physiology journals. For this paper, 
we have collected 443 articles curated by DIVE before 
February 2019. Among these articles, 141 were submitted 
to The Plant Cell journal and 302 were submitted to Plant 
Physiology journal. 

4.1  Usage Statistics

In total, DIVE has learnt 22,747 entities from these journal 
articles. These include 11,964 proteins, 6611 genes, and 
212 plant anatomy entities. On average, there are about 51 
entities found per article. Although we initially presented 
all entities to authors, the number of entities has gradually 
changed to 10 in order to reduce curation workload for 
authors during this period. If there are more than 10 
entities reported by DIVE, these entities are ranked based 
on both their appearance frequencies in the article and 
results of DIVE prediction. On the other hand, authors 
are required to curate up to 10 entities. However, some 
authors opted to curate more entities. We have tracked 
both entities presented to and actions from authors. The 
results are detailed in Table 1. Note that actions are tracked 
per article and have overlap with each other. For example, 
an author may delete an entity to add a new one instead 
of editing the entity. The author may perform add, edit, 
and delete actions over the same entity. So the number of 
curation action does not correspond to number of entities 
missing precisely.

Figure 8 (left) shows the monthly distribution of 
submissions to The Plant Cell and Plant Physiology from 
the ASPB publishing pipeline. Figure 8 (right) shows the 
aggregate ratio of number of articles from each journal 
submitted to the DIVE system in the same period. The 
number of submissions to Plant Physiology is roughly 
twice the number of submissions submitted to The Plant 
Cell.

Figure 9 shows the percentage of most common 
entity types from the DIVE corpus collection of ASPB 
journal articles. As seen, proteins and genes are the two 
most identified named entities from the article. The two 
types account for 83% of total entities identified. About 
7% entities are verified by ontologies from Gramene and 
Araport. About 5% entities are identified as a chemical 
compound.

Figure 6. DIVE search interface

Figure 7. Top 20 inference rules from association analysis.

Table 1
Summary of Total Number of Entities Found, Presented, and Curated 
by Authors.

Total entities retrieved by DIVE for all articles 22,747

Total entities displayed by DIVE to users for all articles 8358

Curation: total addition by authors 315

Curation: total edits by authors 1517

Curation: total deletion by authors 4218
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Figure 10 shows the relation between entities learned 
with respect to the article size (linearly correlated with its 
number of words) for both ASPB journals for the present 
corpus of articles. As expected, a general trend is that 
more entities are identified from longer submission. The 
figure also shows that The Plant Cell is usually longer than 
Plant Physiology. However, the number of entities from 
The Plant Cell seems fewer than that from Plant Physiology 
of a similar length.

4.2  Evaluation

To assess the effectiveness of DIVE results, we compared 
results with ABNER results for the same dataset. ABNER 
is a tool that automatically detects and tags biological 
entities such as proteins and genes in the natural language 
text (Settles, 2005). It is implemented in Java and also 
features a GUI interface where users can manually input 
sections of text for annotation. It uses CRFs (Lafferty 
et al., 2001), a supervised machine learning algorithm, 
that uses a probabilistic graphical model to enable it to 
detect and label relevant tokens. It comes packaged with 
two models, trained on the BioCreative (hereafter referred 
as ABNER_BIO) (Yeh et al., 2005) and NLPBA corpora 
(hereafter referred as ABNER_NLP) (Kim et al., 2004). A 
limitation of this method is that it requires a large amount 
of human annotated data to train the model, and these are 
relatively small corpora containing short stanzas. For this 
comparison, we have collected all 7095 entities approved 
by authors from the 443 articles and used them as the 

 

Figure 8. Distribution of DIVE articles by month (left) and by aggregation (right) for two journals published by ASPB.

Figure 9. Distribution of recognized entities by type

Figure 10. Number of entities learned with article file size
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ground truth for these articles. We then extracted the text 
from all 443 articles as input for the ABNER program. We 
then checked how many entities are reported by DIVE, 
ABNER_NLP, and ABNER_BIO. We calculated recall and 
precision as follows:

The results are detailed in Table 2. The “total number of 
entities” column shows the total number of entities in 
the ground truth data set, reported to author by DIVE, 
recognized by the ABNER_BIO model and the ABNER_NLP 
model. The true positives of each program are shown in the 
“total entities in ground truth” column. The “total recall” 
and “total precision” columns show recall and precision 
values over the entire dataset. The “average recall” and 
“average precision” are calculated averages per article. 
Both ABNER models found far fewer entities in the ground 
truth dataset than DIVE in total and on average. The results 
demonstrate that DIVE is more effective than ABNER to 
identify potential entities of importance to authors. Since 
the ABNER program does not offer a way to sort entities, 

we used total number of entities found by ABNER, which 
resulted in a very low precision score. This also reinforces 
our motivations that existing entities tools cannot be used 
for solving this problem directly. Additional features and 
functionalities must be developed to be used in practice.

Recall scores for all articles using three models are 
shown in Figure 11. Three columns are shown per article 
corresponding to recall results from DIVE (yellow), 
ABNER_NLP (green), and ABNER_BIO (red) models. To 
increase graph readability, we sorted 443 articles in the 
decreasing order of DIVE recall value (yellow), ABNER_
BIO recall value (red), and then ABNER_NLP recall value 
(green). Figure 11 shows that there are only eight articles 
where ABNER outperforms DIVE. DIVE identified all 
entities in the ground truth dataset for 224 articles (50.5%) 
in contrast to only 12 articles (2.7%) using the ABNER_BIO 
model. DIVE identified at least half of the entities in the 
ground truth dataset for 425 articles (95.9%) in contrast to 
173 (39.1%) articles using the ABNER_BIO model.

Table 2 
Results of Entity Recognition Against Author Curation as Ground Truth

Total number  
of Entities

Total Entities  
in Ground Truth

Total  
Recall

Total  
Precision

Average 
Recall

Average 
Precision

DIVE 8358 5123 0.7221 0.6129 0.7993 0.6962

ABNER_BIO 136354 2814 0.3966 0.0206 0.4362 0.0208

ABNER_NLP 127443 3029 0.4269 0.0237 0.4722 0.0251

Ground Truth 7095 - - -

Figure 11. Recall comparison per article between DIVE, ABNER_NLP, and ABNER_BIO.
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5  Discussion and Conclusions
In this paper, we present an application to extract domain-
specific information from journal articles, identify 
additional information content, and deploy service to 
enrich the digital publication during article production. 
The application integrates multiple NLP methods for 
entity recognition and enables human curation to close 
the feedback loop. Based on practical usage statistics, our 
application outperforms the existing algorithm in entity 
recognition. Furthermore, our application is not just a 
new algorithm for entity detection. It can be adapted 
for curating new terminologies and vocabularies. The 
application is still in development, and we are gathering 
feedback from domain researchers and publishing 
professionals. Our early experience with deploying this 
solution in production with two internationally recognized 
plant biology journals from ASPB has been promising. We 
are seeing enthusiastic participation by expert users, and 
at present, we see about 10 curation actions per article in 
our corpus. Based on their feedback, we are also working 
on improving the search features to incorporate full-
text search and relationships uncovered by association 
analysis and are also investigating improvements to our 
entity detection algorithms. Other planned enhancements 
for expert users of DIVE include article recommendations 
and curation action recommendations.

Although DIVE was developed for the use case of 
plant biology journal articles, it has been designed to 
be versatile and is quite readily adapted to document 
collections of any domain. We are presently investigating 
a use case for corpora in other domains as well (e.g., 
aerospace engineering) and will continue to expand in 
this area. We aim to expand DIVE for additional use case 
scenarios from many scientific domains to help scientists 
and researchers at large making sense of their large 
document corpora.
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