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Abstract: A number of deep neural networks have been 
proposed to improve the performance of document 
ranking in information retrieval studies. However, 
the training processes of these models usually need 
a large scale of labeled data, leading to data shortage 
becoming a major hindrance to the improvement of 
neural ranking models’ performances. Recently, several 
weakly supervised methods have been proposed to 
address this challenge with the help of heuristics or users’ 
interaction in the Search Engine Result Pages (SERPs) 
to generate weak relevance labels. In this work, we 
adopt two kinds of weakly supervised relevance, BM25-
based relevance and click model-based relevance, and 
make a deep investigation into their differences in the 
training of neural ranking models. Experimental results 
show that BM25-based relevance helps models capture 
more exact matching signals, while click model-based 
relevance enhances the rankings of documents that may 
be preferred by users. We further proposed a cascade 
ranking framework to combine the two weakly supervised 
relevance, which significantly promotes the ranking 
performance of neural ranking models and outperforms 
the best result in the last NTCIR-13 We Want Web (WWW) 
task. This work reveals the potential of constructing better 
document retrieval systems based on multiple kinds of 
weak relevance signals.

Keywords: document ranking, ad hoc retrieval, neural 
ranking model, weak supervision.

1  Introduction
Document ranking is one of the core problems in 
information retrieval studies. Given a textual query, the 
goal of document ranking is to find relevant documents 
with respect to the query in the whole collection. Recently, 
researchers in the Information Retrieval(IR) community 
have proposed a number of neural ranking models to 
improve the performance of document ranking. However, 
the success of deep neural networks has not been widely 
observed in ad hoc retrieval (Pang, Lan, Guo, Xu, & Cheng, 
2017a). One of the reasons lies in the shortage of labeled 
training data (Dehghani, Zamani, Severyn, Kamps, & 
Croft, 2017; MacAvaney, Hui & Yates, 2017). The large 
number of parameters used in neural ranking models not 
only lead to a better performance but also make the models 
extremely thirsty for data. However, collecting human-
assessed relevance labels for query–document pairs costs 
both time and money. Therefore, recent researches turn 
to investigate the effectiveness of other weak but cheaper 
supervision signals for the training of neural retrieval 
models.

To generate the relevance labels of training pairs, 
previous studies have proposed to use several weak 
ranking signals such as BM25 (Dehghani et al., 2017; 
MacAvaney et al., 2017) and user behavior signals (Xiong, 
Dai, Callan, Liu, & Power, 2017; Zheng et al., 2018). In 
general, this kind of labels is not completely accurate 
and usually contains a lot of noises, so we called it weak 
label. Existing weak labels used in ranking models can be 
classified into two categories:

Heuristics-based label. Several heuristic approaches 
are widely applied and successful in document ranking, 
such as BM25 and language model. BM25 is the most 
common heuristic for generating weak relevance labels 
(Dehghani et al., 2017; MacAvaney et al., 2017). Dehghani 
et al. (2017) used BM25 as the heuristic to generate weak 
labels and reported that their fine-tuned neural models 
outperformed BM25. By using documents’ titles as pseudo 
queries and BM25 scores as weak labels, MacAvaney 
et al. (2017) introduced a filtering method to effectively 
produce positive and negative query–document pairs. 
However, the implicit assumption that the exact matching 
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signals can represent relevance usually brings limitations 
in practical applications, because it ignores semantic 
matching and user factors.

Behavior-based label. User behavior, such as 
user clicks and mouse movement, can provide weak 
supervision signals for document ranking. Practical 
search engines usually treat user clicks as implicit 
relevance feedback. Compared to human-assessed 
relevance labels, click-through data are much easier to 
obtain. Meanwhile, different from heuristics like BM25, 
it contains abundant user preference information and 
implies the intent of users in search tasks. Nevertheless, 
there are still limitations in adopting click-through data 
for the training of ranking models, which cannot be 
ignored. User clicks are affected not only by the results’ 
relevance to the issued queries but also by other factors, 
such as the documents’ positions (Joachims, Granka, Pan, 
Hembrooke, & Gay, 2005), novelty (Zhang, Chen, Wang, 
& Yang, 2011), and presentation styles (Wang et al., 2013). 
Thus, the click-through data are strongly biased and noisy.

Zheng et al. (2018) showed that after being debiased 
by the click model, the click-through data can serve as 
a better source to help improve the performances of 
neural ranking models than to adopt the click-through 
information directly. Click models were proposed to 
derive feedback information of relevance from user clicks 
(Chuklin, Markov & Rijke, 2015). Fed with massive click-
through data, click models can estimate the relevance of 
known query–document pairs by reducing the impacts of 
click sparseness, position bias, etc., which is called click 
model-based relevance.

In the IR community, there is no existing work to 
directly compare the BM25-based relevance and click 
model-based relevance. Existing works studying the click 
model-based relevance only show its effectiveness on the 
test data labeled with the same kind of relevance rather 
than on the human-assessed data. In addition, there is 
no existing work to leverage both BM25-based relevance 
and click model-based relevance in document ranking. 
Therefore, in this paper, we systematically investigated 
the difference between click model-based relevance and 
BM25-based relevance in training neural ranking models. 
We trained three proposed neural ranking models in the 
pairwise mode on two datasets. The first dataset consisted 
of billions of examples annotated by BM25 from SogouT-16 
(Luo et al., 2017b) and the other one is Sogou-QCL (Zheng 
et al., 2018), which is annotated by five click models. 
We adopted partially sequential click model (PSCM), 
one of the best click models so far, and applied a three-
step cascade ranking framework to combine the weakly 
supervised relevance from BM25 and click model, which 

achieved the state-of-the-art ranking performance on a 
standard test set (Luo et al., 2017a). Here, we list two main 
contributions of this paper:

–– By conducting extensive experiments, we compared 
click model-based relevance with BM25-based rele-
vance and showed their different impacts on the trai-
ning of neural ranking models.

–– We proposed a cascade ranking framework to effec-
tively combine weak relevance labels generated by 
click model and BM25, which significantly improved 
neural rankers’ effectiveness.

2  Related Work

2.1  Click Model

Click-through behaviors provide implicit feedback of click 
preferences from users (Agichtein, Brill, Dumais, & Ragno, 
2006). Joachims et al. (2005) found that the click-through 
information is “informative yet biased”. As a probabilistic 
model, most click models follow the examination 
hypothesis (Craswell, Zoeter, Taylor, & Ramsey, 2008): a 
search result at the i th position will be clicked ( 1iC = ) 
only if it is relevant to the query ( 1iR = ) and examined (

1iE = ), i.e.,

1 1 1i i iC R E= ⇔ = ∧ =

By inferring the relevance P ( 1iR = ) and the examination 
probability P ( 1iE = ), click models can estimate the 
click probability based on the noisy and biased search 
logs. Different click models are built following different 
assumptions on how users browse and interact with SERPs 
and hence have different estimations of P ( 1iE = ). While 
the cascade model assumes that users are always satisfied 
with a single click (Craswell et al., 2008), the dynamic 
Bayesian network (DBN) model introduces a separate 
variable to model whether the user will be satisfied after a 
click (Chapelle & Zhang, 2009). The user browsing model 
(UBM) allows users to skip some of the results (Dupret 
& Piwowarski, 2008). Furthermore, Wang et al. (2015) 
looked into the revisiting behaviors of users in SERPs and 
incorporated non-sequential behaviors into the PSCM. Liu 
et al. (2017) proposed the time-aware click model (TACM), 
which can better capture the temporal information.
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2.2  Document Ranking

A lot of learning-to-rank approaches have been proposed 
to address document ranking problem, such as RankNet 
(Burges et al., 2005), RankBoost (Freund et al., 2003), and 
LambdaMART (Wu, Burges, Svore, & Gao, 2010). All these 
learning-to-rank algorithms usually need to be trained on 
effective hand-crafted features in the learning process.

The IR community has applied deep learning methods 
to advance state-of-the-art retrieval technologies. Guo, 
Fan, Ai and Croft (2016) suggested that most of recent 
neural ranking models can be generally classified into 
two categories according to the network architectures. 1) 
Representation-focused model – Models in this category 
first learn vector representations for textual queries 
and candidate documents separately with deep neural 
networks. Then, the relevance is calculated by measuring 
the similarities between the two representations. This line 
of research includes DSSM (Huang et al., 2013), C-DSSM 
(Shen, He, Gao, Deng, & Mesnil, 2014), and ARC-I (Hu, Lu, 
Li, & Chen, 2014). 2) Interaction-focused model – ARC-II 
(Hu et al., 2014), DRMM (Guo et al., 2016), MatchPyramid 
(Pang et al., 2016), and K-NRM (Xiong et al., 2017) belong 
to this category. The term-level interactions between 
queries and candidate documents are calculated first in 
these models. Then, the neural networks learn query–
document matching patterns from these interactions. 
Mitra, Diaz, and Craswell (2017) proposed to take 
advantages of both architectures in Duet. Fan et al. (2017) 
integrated these models into the MatchZoo, which is an 
open-source toolkit for text matching.

2.3  Weakly Supervised Learning

With the development of deep neural networks, data 
have brought breakthroughs in a lot of machine-learning 
areas. With the development of deep neural networks, 
exponential growth of data quantity has brought 
breakthroughs in a lot of machine-learning areas. 
However, data are also the bottleneck in many cases where 
high-quality data are not available yet. Therefore, many 
works have researched into weakly supervised learning. 
For example, Frénay and Verleysen (2014) studied on 
learning from weak or noisy labels in classification tasks. 
Lee (2013) proposed a simple and efficient method of semi-
supervised learning, training networks on labeled and 
unlabeled data simultaneously. In the IR community, Yin 
et al. (2016) took benefit of both click-through information 
and embedding similarities of query–document pairs for 
weakly supervised training in Yahoo search. Dehghani et 

al. (2017) chose BM25 as the heuristic to generate weak 
labels and reported that their fine-tuned neural models 
outperformed BM25. By using documents’ titles as pseudo 
queries and BM25 scores as weak labels, MacAvaney et al. 
(2017) introduced a filtering method to effectively produce 
positive and negative query–document pairs. Compared 
to the previous works, we mainly study on click as an 
alternative weak supervision signal for document ranking.

3  Weak Supervision

3.1  BM25 Relevance

BM25 is a popular bag-of-words ranking function. By 
counting the term frequency (TF) and inverse document 
frequency (IDF) of query terms appearing in candidate 
documents, BM25 gives the ranking scores of these 
documents with respect to the query. Thus, BM25 
only considers the exact matching signal from query–
document pairs, regardless of the semantic relationship 
between the query and documents.

BM25-based relevance has the following advantages 
in serving as a weak supervised signal:

–– In the aspect of effectiveness, BM25 is a classic 
ranking algorithm with proven effectiveness in docu-
ment ranking.

–– As for efficiency, BM25 can serve as a highly efficient 
approach to generate weak relevance labels in large 
quantities and in parallel.

3.2  Click Relevance

With a large scale of search logs collected by the search 
engine, various click models can be utilized to estimate 
the relevance of documents, i.e., P( 1iR = ), which is 
also regarded as click relevance or click model-based 
relevance in previous works (Dupret & Liao, 2010; Zhang 
et al., 2011). In this study, we propose to use it as weakly 
supervised relevance to train neural ranking models, 
hence also called the click label or click relevance. Equally, 
we call the BM25-based relevance the BM25 label or BM25 
relevance for short in the rest of the paper.

Intuitively, without the biases of position, novelty, and 
attention, the more relevant a document is to the query, the 
more likely a user will click on it. As a weak supervision 
signal, click labels have the following advantages:

–– Click labels contain abundant information of user 
preferences that heuristic methods cannot provide.
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–– Click labels can be easily extracted from the search 
logs of real search engine traffic.

–– Click labels are calculated by click models based on 
a large number of user behaviors and do not contain 
any sensitive user identification information.

4  Ranking
We chose several recent neural ranking models in our 
experiment, i.e., ARC-I, Duet, and K-NRM, using the 
implementations from MacthZoo.1

ARC-I is a kind of representation-focused model, 
which extracts the vector representation of the query and 
document based on Convolutional Neural Network (CNN).

Duet contains two CNN-based sub-models, one of 
which is interaction focused for exact matching and the 
other one is representation focused for semantic matching.

K-NRM, an interaction-focused model, uses kernels 
to extract multilevel soft matching signals of query–
document pairs.

Here, we will chiefly state our modifications on model 
implementation, including the loss function and text 
representation.

Loss function. We followed Ai, Bi, Guo, and Croft 
(2018) and applied softmax label in cross entropy loss, 
which is called attention-based cross entropy loss. In the 
pairwise documents ranking setup, the input data instance 
is a series of ( ), ,q d d+ −  where given the query q , the 
document d +  is ranked higher than d −  according to 
their labels. The softmax score ,’q ds ±  is defined as

( )
( ) ( )

,
,

, ,

exp
'

exp exp
q d

q d
q d q d

s
s

s s
±

±
+ −

=
+

where ,q ds  is the relevance score of ( ),q d  predicted by 
the ranker. As the pairwise label of (d+, d-) is (1,0), the loss 
function is given by

( )
( ) ( )

,
,

, ,

exp

exp exp
q d

q d
q d q d

l
l

l l
±

±
+ −

′ =
+

	 ( )
{ }

( ) ( )( ), , ,
,

, , log log 'q d q d q d
d d d

q d d l l s
∈ + −

+ − ′= −′∑L

where ,q dl  is the ground-truth label of ( ) ,  q d .

1  https://github.com/faneshion/MatchZoo

Text representation. In several ranking models 
(e.g., DSSM, C-DSMM and Duet, etc.), textual terms 
in query–document pairs are expressed by n-gram 
(Brown, Desouza, Mercer, Pietra, & Lai, 1992), which is 
not applicable for Chinese data. Instead of this, Pang et 
al. (2017b) suggested using word embedding in Chinese 
IR tasks. Thus, we changed the text representation of 
the distributed submodule in Duet from n-gram to word 
embedding, which densifies the representation matrixes 
in the network and reduces the calculation overhead.

5  Experiment

5.1  Dataset
Table 1
The Statistics of Cick Dataset

No. of 
queries

No. of 
documents

No. of query–document 
pairs

Language

537,366 5,480,860 7,736,480 Chinese

We collected three kinds of labeled data for training in our 
experiments: click, BM25 and human-assessed data. The 
human-assessed data are labeled on a five-point scale with 
2,100 distinct queries and 200,682 unique documents.

Click data. We adopted Sogou-QCL dataset (Zheng 
et al., 2018) in the experiment to serve as training data, 
which is a public dataset with multiple weak relevance 
labels annotated by click models, which are trained on 
real-world search logs sampled from a commercial search 
engine in China. Table 1 shows the statistics of Sogou-QCL 
dataset. As reported by Zheng et al. (2018), TACM and 
PSCM are the best two click models for predicting click 
probabilities of documents.

BM25 data. With the same query set as click data, we 
collected the first 200 documents for each query retrieved 
by SogouT-16 online search system (Luo et al., 2017b), a 
Solr2 retrieval system using BM25 with default parameters 
(i.e., k1=1.2and b=0.75).

Evaluation data. We used the test data released 
in NTCIR-13 WWW task (Luo et al., 2017a), which is the 
most recent ad hoc search benchmark in NTCIR. This 
dataset contains 100 distinct queries and the first 1000 
documents for each query, which are retrieved by BM25 
in SogouT-16 corpus. We kept the first 100 documents 
according to their BM25 scores per query as the test set 

2  http://lucene.apache.org/solr/
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in our following experiment, referred to as Test-NTCIR. 
All query–document pairs in Test-NTCIR had been rated 
by human assessors on a four-point scale following the 
standard TREC criterion. We made sure that the queries 
for training and validation do not appear in this test set.

5.2  Baselines

We used BM25 and three types of global learning-to-rank 
models as our baselines: RankNet (Burges et al., 2005), 
RankBoost (Freund, Iyer, Schapire, & Singer, 2003), and 
LambdaMART (Wu et al., 2010). In this paper, we used the 
implementations of these models from RankLib.3

RankNet is a well-known ranking model using a 
neural network trained with pairwise losses.

RankBoost learns preferences based on the boosting 
approach.

LambdaMART is the state-of-the-art learning-to-rank 
algorithm trained with listwise losses.

5.3  Experimental Setup

Data preprocessing. We extracted the full-text of 
documents from HTML pages. As all the queries and 
documents were in Chinese, we segmented them using 
Jieba,4 a popular word segmentation toolkit. Then, the 
data were treated as word sequences as same as English. 
For models with embedding vector representation, we 
trained the word embedding using word2vec (Mikolov, 
Sutskever, Chen, Corrado, & Dean, 2013) on a public 
Chinese web corpus, SogouT-16 (Luo et al., 2017b). For 
learning-to-rank baseline models, we extracted the same 
46-dimensional hand-crafted features as those in LETOR 
4.0 dataset (Qin & Liu, 2013) from the human-assessed 
data, including TF, IDF, and scores of BM25 and LMIR.

Model settings. We implemented all the ranking 
models using TensorFlow (Abadi et al., 2016). The 
parameters in models were optimized by using Adam 
optimizer (Kingma & Ba, 2014) to compute gradients in the 
backpropagation. We splitted click data and BM25 data 
into 200 queries for validation and others for training. 
The human-assessed data were split into 100 queries 
for validation and 2,000 documents for training. We 
tuned all hyperparameters of models on their validation 
sets. We kept the first 10 and 1,000 terms in queries and 
documents, respectively, in all models. The embedding 

3  https://sourceforge.net/p/lemur/wiki/RankLib/
4  https://github.com/fxsjy/jieba

size was 50, and the first one million most frequent terms 
in our corpus were kept, while others were replaced by 
an identical word, UNK, which was common in lots of 
Natural Language Processing(NLP) and IR tasks (Guo et 
al., 2016; Xiong et al., 2017). The initial learning rate was 
set to 0.001. To prevent overfitting, we used dropout in all 
models with 0.5 as the dropout rate.

Evaluation. We evaluated neural rankers by nDCG, 
Q-measure, and nERR. We found that the results of all 
three metrics present similar findings. Owing to page 
limit, we only report the results of nDCG in this paper. The 
student’s t-test was used to examine the differences in 
model performance.

5.4  Results and Analysis

In this section, we seek to answer the following research 
questions:

RQ1: What is the difference between the click label 
and the BM25 label as a weak supervision signal?

RQ2: Is click label effective in training neural ranking 
models when evaluated on human-assessed test data?

RQ3: How can we combine click label and BM25 label 
to contribute jointly to model promotion?

We designed our experimental framework as shown 
in Figure 1. For a query q in the test set, the candidate 
documents in the D  set will be ranked by BM25 at the 
first step. Then, the top-ranked documents will be judged 
by neural rankers. Specifically, to answer RQ1 and RQ2, we 
conducted a case study and trained all the ranking models 
on click labels and BM25 labels, respectively, which is Exp 
1 in Figure 1. In Exp 2, we employed the ranker trained on 
click labels (click ranker) and after that trained on BM25 

Figure 1. The experimental framework. The BM25/click ranker 
represents the neural ranking model trained on the data using 
BM25/click labels.
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labels (BM25 ranker) in a cascade ranking framework to 
investigate RQ3.

What is the difference between click label and 
BM25 label as a weak supervision signal? To answer 
this research question, we ranked all documents of 
Sogou-QCL according to their click labels and kept the 
first five documents per query. Then, we looked into 
the relationship of distributions between BM25 label 
and click label, which is shown in Figure 2. BM25 label 

and click label are positively correlated in general. The 
closer the labels are to 1, the more the documents with 
corresponding BM25 labels and click labels. When 
comparing the histograms beside the kernel density map, 
we found that the distribution of documents’ click labels 
is more concentrated than that of their BM25 labels. From 
the kernel density distribution, we can see that among the 
documents with higher click (or BM25) labels, the range of 
their BM25 (or click) labels is more dispersed. Meanwhile, 
there exist a number of documents with the highest click 
(or BM25) labels and the lowest BM25 (or click) labels. All 
of these findings indicate the big difference between click 
model and BM25 in judging highly relevant documents.

For a clearer understanding of the difference between 
click label and BM25 label, we conducted a case study 
as given in Table 2. Case A shows an example with a low 
BM25 label but a high click label. The document has no 
exact matching with important terms in the query, such 
as “esophagitis” and “medicine”, so its BM25 score is 
rather low. It, however, provides the right answer to the 
query, which leads to a high probability to be clicked by 
search engine users. In case B, the document is annotated 
with a high BM25 label and a low click label. Although the 
document has a lot of exact matching signals with respect 
to the query terms, it cannot satisfy the information need of 
users. Thus, the click relevance of this document is rather 
low. These two cases show the limitation of the BM25 label 
that sometimes exact matching signals cannot represent 
relevance in neural model training. Based on a large scale 

Figure 2. The kernel density distribution of BM25 labels and click 
labels. We normalized BM25 labels and click labels into the range of 
[0, 1] within the query. The darker the color, the more the documents 
with corresponding values of BM25 relevance and click relevance.

Table 2
Examples from Training Data Annotated with BM25 Labels and Click Labels. (The Red Terms Represent the Exact Matching Parts in the 
Document with Respect to the Query Terms. We Normalize the Values of BM25 Labels and Click Labels into the Range of [0, 1] within the 
Query.)
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Table 2 
Examples from Training Data Annotated with BM25 Labels and Click Labels. (The Red Terms Represent the Exact Matching Parts in the 
Document with Respect to the Query Terms. We Normalize the Values of BM25 Labels and Click Labels into the Range of [0, 1] within the 
Query.) 

Case A B C

Query What is the medicine for esophagitis? Nikon D800 camera setup tutorial The difference between battleship and cruiser

Document

Hello, I suggest you take a drug for treatment.
Omeprazole 1 capsule twice a day (taken on an empty
stomach); Lizhu Dele 2 packets per day 2 times a day
(taken on an empty stomach); Amoxicillin 2 times a
day 2 times a day; Clarithromycin 1 capsule twice a
day.

Also pay attention to several aspects: 1, life is
regular, optimistic, quit smoking and avoid alcohol, do
not overeating or hunger and unequal; 2, eat less
meals, avoid foods that are difficult to digest and
irritate, such as coffee, spicy things; 3, have stomach
swell, pantothenic acid, suffocation, should use
morphine or metoclopramide, take half an hour before
meals; 4, people with stomach pain, can use pain
relievers or other stomach drugs with analgesic effect;
5, a very small number of patients with chronic
atrophic gastritis have malignant gastric cancer, so a
gastroscopy review is required every year. I wish you
a speedy recovery.

Nikon D800 D810 Photography Tutorial | Getting
Started Tutorial | Usage Tutorial
Related tutorials recommended:
Nikon D800 detailed setup tutorial (a total of 21
lessons) (VIP) 2016.9.10 update
Nikon D800 D800E Photography Tutorial Using the
tutorial (VIP) 2015.7.25 update
Nikon D810 detailed setup tutorial | Usage tutorial (9
lessons) (VIP) 2015.3.25 update
Nikon D810 digital SLR operation tutorial (20 lessons
in total) (free video sharing) 2016.2.14 update
Nikon D810 detailed setup tutorial (24 lessons in total)
(VIP) 2016.2.17 update

Comparing the armor and artillery caliber, the
battleship is clearly dominant. The speed of the cruiser
is slightly higher than that of the battleship. The size
of the artillery is the smallest. The armor is roughly
the same as the main gun, so it is also the thinnest, but
the range may exceed the battleship (for example, the
Hipper Class in Germany hit the British battle Hood
on 29km). In battles where no battleships and aircraft
carriers fought, cruisers often replaced battleships for
artillery and other missions, and their number of
artillery was sometimes comparable to that of a
battleship. Most of the battleship's tonnage is much
higher than the cruiser, but there are still some
"perverts" in the cruiser, reaching 20,000 tons of
German-class German-class armored cruisers. The
speed of the cruiser is never much higher than that of
the battleship, because most of the time they need to
follow the battleship.

BM 25 label 0.21 0.94 0.98

Click label 0.95 0.47 0.01
 



� Investigating Weak Supervision in Deep Ranking   161

of practical click logs, the click model can estimate more 
accurate relevance labels for query–document pairs with 
more user clicks without knowing the content of queries 
and documents. However, there are also disadvantages 
of click label. When clicks of a document are rare, its 
relevance estimated by click models may be rather 
inaccurate, such as case C shown in Figure 2. Although the 
document in case C is highly relevant in both exact and 
semantic matching, its click relevance is almost 0 because 
of its low-ranking position in the result list and rare clicks.

As for the data we used in the experiment, since click 
data are sampled from a commercial search engine, the 
documents in it are more likely to be highly relevant to 
the queries and preferred by users than those in the BM25 
data, which are retrieved by BM25 from a web collection. 
However, the average number of documents for each 
query (the depth of the document pool) in click data is 
much smaller because the search logs mostly record the 
results in the first SERPs. Thus, we assume that click 
label has more potential to be effective when ranking on 
highly relevant documents, while BM25 label can improve 
the ranking quality especially by capturing the exact 
matching signal to the queries.

Is click label effective in training neural ranking 
models when evaluated on human-assessed test data? 
Existing works (Xiong et al., 2017; Zheng et al., 2018) that 
leverage click-through information in document ranking 
focus on the model performance on test data assessed 
with click-through rates or click model-based relevance, 
instead of human-assessed data. Therefore, we would like 
to investigate this research question in our experiment. 
Table 3 shows the performances of ranking models on 
Test-NTCIR in Exp 1. We report the performances of ranking 
models trained on BM25 labels and click labels, as well as 
several baseline methods, including four learning-to-rank 
models and BM25. BM25 achieves the best performance 
among all models. For the BM25 rankers, although their 
objective is to rank like BM25, they are neural approaches 
using semantic matching and representation learning 
without the external knowledge, such as TF and IDF, used 
in BM25, which we consider as the reason for their worse 
performance compared to BM25. For the click rankers, 
their training data have different data distribution from the 
test data, such as fewer documents per query and higher 
quality documents. For those documents with low quality 
in the test set, which usually do not attract any user click, 
it is difficult for click rankers to predict their relevance 
effectively. For the baseline models trained on human-
assessed data, we attribute their worse performance 
compared to BM25 to the limited size of human-assessed 
training data.

With the poor performance of click rankers on the 
whole Test-NTCIR, we further employed the models in 
only re-ranking on Test-NTCIR-TopKBM25, a subset of Test-
NTCIR, where only the first K  results ranked by BM25 
for each query were kept. We selected the re-ranking 
range K  from { }10, 20, 30, 50, 70, 90  and got the best 
performances of all click rankers when  1 0K = , while 
all BM25 rankers performed best when K=20. Table 4 
shows the model performances on Test-NTCIR-TopKBM25. 

Figure 3. The performance curves of K-NRMclick in the cascade 
ranking framework with different ranking ranges clickK .

Table 3
The Performances of Ranking Models on Test-NTCIR. (△ Indicates 
Statistical Significance over BM25 with p ≤ 0.05. * Indicates Tested 
on the Click Rankers over the same BM25 Rankers (e.g., ARC-Iclick vs. 
ARC-IBM25) with p ≤ 0.05.)

Data Model nDCG@1 nDCG@3 nDCG@10

BM25 ARC-I 0.5836 0.5791 0.5778△

Duet 0.5918 0.5913 0.5980△

K-NRM 0.5459 0.5630△ 0.5957△

Click ARC-I 0.5160△* 0.5300△* 0.5390△*

Duet 0.5954 0.5893 0.5892△

K-NRM 0.5797 0.5872 0.5900△

Human RankNet 0.5993 0.5970 0.6104

RankBoost 0.5950 0.6117 0.6193

LambdaMart 0.5870 0.6165 0.6213

ARC-I 0.5248△ 0.5317△ 0.5376△

Duet 0.5254△ 0.5214△ 0.5467△

K-NRM 0.5135△ 0.5325△ 0.5323△

BM25 0.6109 0.6196 0.6386
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Almost all models with weak supervision have significant 
improvements on all evaluation metrics compared to 
themselves tested on the original Test-NTCIR. The reasons 
for this may be two-fold: (1) the top documents ranked by 
BM25, which contain lots of exact matching signals, are 
more likely to be relevant to the queries and (2) with the 
increase in the size of test set, the ranking task for the 
models also gets more difficult because more documents 
dissimilar from the training data will be involved in. K-NRM 
is the best performed model trained on click labels. Our 
results reveal the different behaviors of click rankers and 
BM25 rankers in re-ranking. Although the improvements 
of BM25 rankers are statistically significant compared to 
themselves tested on the whole Test-NTCIR, they are still 
smaller to those of click rankers. In this experiment, click 
label shows its effectiveness in training neural ranking 
models when re-ranking the top retrieved documents.

How can we combine click label and BM25 label 
to contribute jointly to model promotion? Owing to 
different impacts of click label and BM25 label on model 
training, we propose to combine two kinds of weak 
labels by employing click rankers after BM25 rankers in 
a cascade ranking framework, i.e., Exp 2 in Figure 1. At 
the first stage, a large scale of documents will be ranked 
by BM25 and the top-ranked documents will be kept (i.e. 
the generation process of Test-NTCIR). Then, these kept 
documents will be sorted by BM25 rankers at the second 
stage. At the third stage, click rankers will be adopted to 
predict the final ranking lists of documents on the set of 
top documents from the second stage.

We selected the most effective model K-NRM in the 
previous experiment. We used DuetBM25 at the second stage 
in our cascade ranking framework, because it is the best 

model trained on BM25 label and slightly outperforms the 
strongest baseline BM25. At the second stage, we fixed the 
ranking range at 20, while at the third stage, we chose 
ranking ranges clickK  from { }3, 5,1 0,1 5, 20  and got the 
best performance of all click models when 10clickK = . 
Table 5 shows the best model performances and statistical 
significance of our cascade ranking framework. The 
statistical significance is tested over the performances of 
themselves on the whole Test-NTCIR and the BM25 ranker 
at the second stage, respectively. In the cascade ranking 
framework, all click rankers have significant improvement 
on all nDCG metrics compared to their previous 
performances in Table 3. Meanwhile, the performance 
of K-NRMclick is also significantly improved on all nDCG 
metrics compared to DuetBM25. Our results show the 
effectiveness of cascade ranking framework in enhancing 
the performances of weakly supervised ranking models 
and prove our hypothesis that click label is more likely 
to be applied to re-rank highly relevant documents. Our 
cascade ranking framework outperforms the best result in 
NRCIR-13 WWW task (Luo et al., 2017a) and RUCIR-C-NU-
Base-1, with 3.31% improvement on nDCG@10. Figure 3 
shows the performance curves of K-NRMclick in our cascade 
ranking framework with different clickK . With the 
increase in ranking range clickK  from 3 to 10, K-NRMclick 
performs better in all evaluation metrics and achieves the 
best performance when  10clickK = .When clickK  is larger 
than 10, there will be more nonrelevant or somewhat 
relevant documents in the candidate list, causing worse 
performance of click rankers.

5.5  Preference Test

Since search engine is an interactive system with users, 
we conducted a preference test among cascade ranking 
frameworks K-NRMclick, DuetBM25, and BM25 to investigate 
whether our cascade ranking framework and click neural 
ranker can win the preference of search engine users. 
First, we compared K-NRMclick with DuetBM25 and then with 
BM25 and chose the most preferred one among the three 
models, K-NRM, to compare with the cascade ranking 
framework. In each comparison between two rankers, we 
invited seven people to annotate their preference in seven-
level criteria (+3 to -3), indicating how much the left page 
is better than the right page. There were 14 annotators in 
total. We calculated the average score of users’ preferences 
for each query as the final preference score. Table 6 shows 
win/tie/loss of preferred query numbers of K-NRMclick 
compared to DuetBM25, BM25, and cascade ranking 
framework. Our results show that K-NRMclick is preferred 

Table 4
The Performances of Ranking Models on Test-NTCIR-TopKBM25 (i.e., 
the Set of the First K Documents Per Query in Test-NTCIR Ranked 
by BM25). (* and ** Indicate Statistical Significance over the 
same Models Evaluated on Test-NTCIR with p ≤ 0.05 and p ≤ 0.01, 
Respectively.)

Data Model K nDCG@1 nDCG@3 nDCG@10

BM25 ARC-I 0.6151* 0.6192** 0.6229**

Duet 20 0.6337** 0.6321** 0.6396**

K-NRM 0.6052* 0.6192** 0.6322**

Click ARC-I 0.6111** 0.6241** 0.6405**

Duet 10 0.6423** 0.6428** 0.6448**

K-NRM 0.6448* 0.6637** 0.6520**

BM25 – 0.6109 0.6196 0.6386
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by users on more queries than DuetBM25 and BM25, while 
our cascade ranking framework outperforms single model 
K-NRMclick, which are consistent with experimental results 
of nDCG metrics.

6  Conclusions
In this paper, we investigate the difference between BM25-
based relevance and click model-based relevance in 
training neural ranking models. Extensive experiments are 
conducted to show the effectiveness of click model-based 
relevance in training neural ranking models when tested 
on human-assessed test set. Our results demonstrate that 
the click label can improve the rankings of highly relevant 
documents, while the BM25 label can help rankers capture 
more exact matching signals. We also propose a cascade 
ranking framework to fuse the two kinds of weak labels, 
which significantly improves the performances of neural 
rankers and wins in the preference test comparing with 
other single ranking models. Our work provides a novel 
and feasible solution, cascade ranking framework, to 
train data-driven ranking models. For the future work, 
we would like to design a single neural ranking model 
to jointly take advantage of BM25 relevance and click 
relevance.
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