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Abstract: The Identifier Services (IDS) project conducted 
research into and built a prototype to manage distributed 
genomics datasets remotely and over time. Inspired by 
archival concepts, IDS allows researchers to track dataset 
evolution through multiple copies, modifications, and 
derivatives, independent of where data are located – both 
symbolically, in the research lifecycle, and physically, 
in a repository or storage facility. The prototype 
implementation is based on a three-step data modeling 
process involving: a) understanding and recording of 
different researcher workflows, b) mapping the workflows 
and data to a generic data model and identifying functions, 
and c) integrating the data model as architecture and 
interactive functions into cyberinfrastructure (CI). Identity 
functions are operationalized as continuous tracking of 
authenticity attributes including data location, differences 
between seemingly identical datasets, metadata, data 
integrity, and the roles of different types of local and 
global identifiers used during the research lifecycle. CI 
resources were used to conduct identity functions at scale, 
including scheduling content comparison tasks on high-
performance computing resources. The prototype was 
developed and evaluated considering six data test cases, 
and feedback was received through a focus-group activity. 
While there are some technical roadblocks to overcome, 
our project demonstrates that identity functions are 
innovative solutions to manage large distributed genomic 
datasets.

Keywords: data identity, content comparison, distributed 
data management, data modeling, life sciences, 
cyberinfrastructure

1  Introduction
As open science and open repository movements gain 
ground, a disconnect remains among in-research, 
published, and reused data. This is especially true for 
projects in which large datasets are stored and analyzed 
across different computational resources by researchers 
at different institutions, conducting studies as parallel 
workflows, over the course of several years. The isolation 
and disparity of data and processing components of a 
same project make it difficult to track relations between 
data sources and derivatives and to maintain adequate 
metadata across systems. This gap poses extra burdens 
for researchers and, consequently, for the sustainability 
of an open data environment. Furthermore, repositories 
generally accept only final datasets and many accept only 
a segment of the complete set (e.g., the National Center 
for Biotechnology Information (NCBI) (2018), only accepts 
sequence data). As a result, the bulk of curation happens 
when data are about to be published, and researchers 
often have to resort to multiple repositories to publish all 
of a project’s data. This leads to a disconnection among 
data publications and between active, published, and 
non-published related data. Whereas data in repositories 
remain preserved and stable, the data components 
continuously managed by the research team may change 
in both content and location. Without mechanisms to track 
relationships and changes among data components over 
time, repositories and researchers cannot create a useful 
and sustainable network of data relations and semantics. 

To overcome these challenges, we conducted research 
into a set of complementary identity functions that can 
be used to track relations among in-research, published, 
and reused genomics data in a distributed environment. 
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These functions use different data attributes to establish 
identity, such as: metadata, checksums, local and 
global identifiers, file locations, results of data content 
comparisons, and the sources that data belong to. One 
or several of these attributes and the relations between 
them can uniquely distinguish files or groups of files as 
belonging to a specific class, such as a research stage 
or process (e.g., alignment data, analysis, data, and 
published data). Identity functions can contribute to 
making data findable, accessible, interoperable, and 
reusable (FAIR) (Wilkinson et al., 2016). Identifier Services 
(IDS) research is framed by traditional archival principle 
of authenticity in the digital domain (Guercio, 2001). 
It is also informed by the notion of postcustodialism, 
which proposes that there is no need for digital objects to 
reside under one custodian (e.g., a repository) as long as 
archival principles guide their management and long-term 
preservation (Henry, 1998). As growing and evolving data 
are used and stored in a distributed ecosystem, different 
organizations and people can become their stewards. IDS 
is intended to be an instrument that contributes to manage 
such complexities.

Our research methodology took a prototype 
implementation and evaluation approach in which 
identity functions were accessed and carried out via the 
IDS, a web portal through which research teams could 
test and evaluate them. In the portal, identity functions 
were realized through different computational analyses 
performed on the files (e.g., content comparison, 
integrity, and location checks).This prototype focused on 
genomic studies, because they encompassed many of the 
challenges we were trying to address: a single project can 
contain many and large (tens to hundreds of GB) files; 
many projects involve several researchers at different 
institutions; data analysis involves multiple steps; and 
cyberinfrastructure (CI) for data storage, sharing, analysis, 
and publication exists but as largely siloed resources. The 
goals of IDS are to:

–– provide CI that significantly improves management 
of large distributed datasets at any point of their 
lifecycle;

–– allow users (individuals and repositories) to organize 
their data and metadata according to their research 
workflows;

–– relate and represent dispersed data, independent 
of where the data are located and whether data are 
partial or complete, duplicated, private or public, or 
active or static – at any point in the research lifecycle;

–– schedule services to check location, integrity, and 
content similarity of data over time to verify its 
evolution;

–– gather users’ requirements and evaluate their 
adoption of IDS; and

–– identify gaps and needs to advance large and 
distributed data management.

We operationalized the goals within a CI, encompassing 
the networks, web services and UI, cloud, databases, and 
high-performance computing (HPC) resources needed 
to develop, manage, and conduct our proposed identity 
functions. IDS is not a storage system but rather software 
and services that allow interactions with files in remote 
storage. The design and implementation of the prototype 
were informed by real-world genomic test cases, for 
which we listened to the needs of researchers working 
on projects conducted across remote teams and involving 
multiple storage and publishing locations. Because 
IDS had to accommodate their requirements within the 
envisioned functionalities, prototype implementation and 
evaluation of the test cases were accomplished in parallel. 
Researchers registered their datasets and metadata 
in IDS and provided feedback that was used to adjust 
development. This brought up research and technical 
challenges, both conceptual and practical. In addition, 
before ending the research project, we formed a focus 
group to assess users’ adoption.

In IDS, users create custom data models that represent 
the materials (e.g., specimens, probes), processes (e.g., 
sequencing, genome assembly), and data as entities1 that 
relate to specific lifecycle stages of their research projects. 
Users can register and associate large data that are 
distributed across storage systems, including similar data 
instances, with these entities and upload corresponding 
metadata via web forms or in bulk. Around the different 
entities, the metadata are used to differentiate the structure 
and components of the dataset. Once data are registered 
in IDS, researchers can use their project landing page to 
initiate or schedule identity functions on their dataset, 
such as verifying integrity and obtaining digital object 
identifiers (DOIs). To help manage large collections, users 
can keep registering new data and can also create subsets 
of the data that automatically preserve the modeled 
relations among all the entities. Functions requiring 
computation, such as checksum calculation and content 
comparison, are run on HPC resources and report results 
back to IDS. Repeated over time, the metadata and the 
results from the identity functions create a representation 
of a dataset’s provenance and evolution. IDS can be used 
by researchers to track data stored at multiple locations, 

1  Entities are how we operationalize classes of files in a data model. 
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and vice versa, by repositories and data stores to continue 
tracking the evolution of the datasets.

This paper is organized as follows. In the Related 
Work section, we discuss authenticity as the conceptual 
framework for IDS, and review how different repository 
and data management projects support identity functions 
and implement data models. Along with each point, we 
clarify the novel contributions brought by IDS. In the 
Research Methodology section, we describe how we 
operationalized and implemented each identity function 
in the IDS prototype. We note each as a task including its 
evaluation through a data test case, and we describe the 
results of a final focus group. In the Conclusions section, 
we discuss the outcome and future needs.

2  Related Work
Authenticity is an archival principle that considers 
provenance, content, context, and integrity to attest 
that a record is what it claims to be over time and space 
(Hirtle, 2000). Mechanically, establishing authenticity for 
a digital object may involve verifying the integrity of the 
bits, its metadata, and its identifiers. Conceptually, an 
intelligent system could help determine and document an 
object’s authenticity through series of related assertions 
about a digital object in connection to its provenance, 
versions, and derivatives (Lynch, 2000). However, while 
archival principles are making their way into the realm 
of digital data curation, they have not been developed 
into automated and scalable methods yet (Ray, 2012). 
IDS is designed to bridge this gap. In it, authenticity is 
operationalized as different identity functions within a 
scalable CI.

2.1  Data Identity and Repository Systems

As well as opportunities, open data movement introduces 
new challenges to establishing identity. In the current 
scientific environment, data are an “unruly and poorly 
bounded object” (Wynholds, 2011), existing as multiple 
versions, which may be stored in different places at 
different times and, in many cases, bear different 
identifiers. In this setting, a key identity function should 
allow files or groups of files to be distinguished from 
one another at any time in a dataset’s lifecycle. As long-
term custodians of data, existing repository systems fell 
short of performing this function. Most have poor or no 
mechanisms to continuously assess identity beyond 
validating integrity via checksums completed at ingest 

(Factor et al., 2009). Furthermore, checksum algorithms 
are of limited use for large data, because they cannot 
tell what has changed. Finally, repositories have limited 
mechanisms to link to external related datasets, and 
current initiatives are more focused on linking data 
to related publications (Hoogerwerf et al., 2019). This 
landscape suggests the need for solutions such as IDS 
that can track, validate, and document data identity in 
a continuum and at scale, regardless of where data are 
stored. In this postcustodial environment, IDS can be 
used by researchers and by repositories to join different 
instances, stages, and processes of data.

2.2  Infrastructure for Distributed Data

Several pieces of infrastructure exist to manage the 
lifecycle of life sciences data. Platforms such as Syndicate 
(Nelson & Peterson, 2014) and CyVerse (Merchant et al., 
2016) are geared toward distributed data storage and 
management. Both allow researchers to scale their data 
storage, share data with others, and offer data publication 
services. Galaxy (Afgan et al., 2016), another popular life 
sciences data analysis platform, is not geared toward data 
storage or publication but does include metadata features. 
While projects such as these are crucial for supporting 
biological research, they do not offer identity functions 
for distributed data.

The Open Science Framework (n.d.) is a free, open-
source web platform for managing research projects 
between multiple collaborators. In addition to storage 
within OSF, you can link data to commercial cloud 
platforms, add metadata, and organize data. OSF issues 
DOIs for self-publishing snapshotted versions of projects 
but neither includes data analysis tools nor supports 
direct publication to external repositories. Unlike IDS, 
OSF stores the data on its own platform and does not 
support distributed data management. For researchers 
working in a programmatic environment, Synapse 
(Bionetworks, n.d.) provides an open-source platform to 
carry out, track, and communicate their research in real 
time. It enables co-location of data, code, and results and 
narrative descriptions of that work. It can be connected 
to cloud computing resources, provides wikis for project 
management, and mints DOIs for published projects. 
Importantly, Synapse works with big data, but it also 
relies on a single storage location and does not provide a 
full suite of identity functions.

COPO (2015) is a portal focusing on plant scientists to 
store and retrieve data, making it easy to add metadata 
through a user interface that collects information about 
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different aspects of a project (e.g., specimen, analysis, 
sequences). The COPO interface makes helpful suggestions 
regarding what information you might want to submit and 
normalizes metadata, which can be uploaded in bulk, 
to controlled vocabularies, ontologies, and community 
standards assisting with data integration. In addition, 
publications can be submitted through COPO to long-
term storage repositories. IDS could be a complement 
to this project by tracking the evolution of the different 
components of a dataset.

At the end of a research project’s lifecycle, data 
repositories continue to play a crucial role in providing 
FAIR data. The International Nucleotide Sequence 
Database Collaboration (INSDC) (2018) coordinates efforts 
among three large international repositories, including 
NCBI in the US. Most journals require researchers to 
submit their sequence data to an INSDC repository before 
a corresponding article can be published. Dryad (Vision, 
2010), a repository heavily used by the life sciences 
community and now accepting all kinds of research 
data, partners with journal publishers to accept data 
connected to a publication. Like numerous other topic-
specific repositories that exist in life sciences, they have 
shortcomings. Only a few, like Dryad and the CyVerse 
Data Commons, publish the full dataset associated with 
a study, and in the case of the former, there are size 
limitations. Most do not include a data model to support 
flexible data organization, providing general or domain-
specific metadata standards. As a result, researchers 
often end up publishing their projects in more than one 
repository, leading to related data that are not linked in 
any way. These gaps indicate a need for IDS to manage 
and relate multiple copies or instances of datasets across 
different repositories and data stores.

2.3  Data Modeling

Data modeling is the process of describing the entities 
that are important to a system and how they relate to one 
another (West, 2011). Many researchers are familiar with 
modeling methods, which they use to operationalize 
research problems as code and workflows. However, they 
do not necessarily use them to organize their data. Instead, 
during active research, the vast majority of researchers use 
hierarchical file structures and file naming conventions 
to organize their data on local computers, so this is the 
method that gets adopted when they move into big data 
on remote storage systems (Gray, 2005). Unfortunately, 
simple hierarchical systems lack the flexibility to 
reorganize data as needed and do little to support data 

understandability and discovery. Thus, they are not well 
suited for managing big data.

Data modeling is the first step in building an 
information system. In repository systems, data models 
are the backbones of how data are packaged in relation 
to metadata and access functionalities. Repositories such 
as Dspace (Phillips & Koenig, 2008), Fedora (n.d.), and 
Dataverse (Gary, 2007) each use a unique data model 
that is tied to one or more metadata schemas to represent 
published datasets. Repositories that use data models for 
managing data across the lifecycle are not common, but 
an example outside of life sciences is worth reviewing. 
DesignSafe (Rathje et al., 2017), a CI for natural hazards 
engineering, uses four different data models to allow 
interactive curation across the lifecycle, for publicly 
representing data obtained by hybrid simulation, 
experiments, field reconnaissance, and simulation 
research methods used by the community.

Most disciplinary databases use a relational model 
to organize their data. For example, INSDC database uses 
models that relate projects, specimens (bio-samples), 
sequences, and genome features. COPO uses a model 
that allows users to connect specimens and experiments 
to specific data. Generalized data models for sharing 
and discovering data on the World Wide Web include 
the Portland Common Data Model (Duraspace, 2016) 
and the Open Resource Exchange (ORE) (2014) model. 
DataONE uses a modified version of ORE to describe the 
approximately 800,000 datasets it aggregates and indexes 
(2015). Several ontologies can also be used as general data 
models. The Provenance Ontology (PROV-O) (2013) is a 
high-level ontology based on the PROV data model for 
provenance (2013). Other ontologies have been developed 
to record and integrate scientific data, i.e., experiments 
or measurements by humans or sensors (Haller et al., 
2018; Madin et al., 2007; Walls et al., 2014). A preliminary 
work showed that these ontologies are compatible and 
can be mapped to PROV-O (Semantic-Observations, 
2016), suggesting that the core concept of linking entities 
and activities is useful for recording information about 
research. The DCC Curation Lifecycle Model indicates the 
stages of a research process, from data generation to reuse 
(DCC Curation Lifecycle Model, 2016). In IDS, we use the 
DCC model as a framework to allow users to build their 
own models to represent the steps and processes involved 
in their research. IDS links physical files stored elsewhere 
to the processes (as entities and metadata) that use and 
generate them. The IDS generic data model maps to PROV 
(see Figs. 1A, 1B, and 1C).
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3  Design and Implementation of 
the IDS Prototype as a Research 
Methodology
IDS research was operationalized and implemented 
as a set of prototype services available through a web 
interface. The research methodology consisted of building 
seven tasks. Completion and results of the tasks were 
evaluated using genomic data test cases and involving 
the researchers that created them. Along with the task 
narrative, we report how we tested each.

Task 1: Gather Genomic Data Test Cases
Working with six research teams on their real genomics 

test cases, we were able to gather their data management 
requirements, build and test IDS functionalities, and 
adjust them as needed. The standard procedure for 
analyzing the test cases consists of multiple steps. First, 
IDS personnel worked with collaborators to describe their 
research workflows including the timeline, processes 
involved in the project (e.g., specimen collection, data 
analysis, and data preprocessing), data types (including 
which types need to be preserved or published), and 
expectations for transitioning from in-research to public 
data. All the test cases were documented on the IDS 
project wiki. In the following sections, we describe two 
cases that were fully executed in the IDS prototype and 
used to illustrate this paper.

3.1  Maize Methylation

This project (Li et al., 2015) performed whole-genome 
bisulfite sequencing (WGBS) for five maize (Zea mays) 
genotypes, resulting in an NCBI Sequence Read Archive 
(SRA) (n.d.) submission of five FASTQ files. The majority of 
the research and derived publications focus on analyses 
of one hundred base pair (100 bp) tile files that report the 
outcome of the alignment and analysis of methylation. 
Researchers would like to share them publicly. For this, 
they wanted DOIs for each maize genotype as subsets of 
the complete dataset that includes one 100 bp tile file, 
a copy of the corresponding sequence file deposited at 
SRA, and a description of how those were created. This 
was important because the same underlying sequence 
data may be reused to create a new 100 bp tile with altered 
algorithms or based on alignment to an updated reference 
sequence. The complete dataset was stored on Corral 
(n.d.) at the Texas Advanced Computing Center (TACC) 
(n.d.) during research, and it was later published in 

CyVerse Data Commons (Springer, N, 2017a; 2017b; 2017c; 
2017d; 2017e).

3.2  High-Throughput in Situ Hybridization 
(HT-ISH)

Data for this case came from the LungMAP initiative 
(Ardini-Poleske et al., 2017) , which focuses on the 
development of the lung just before and after birth. The 
project collects HT-ISH data on gene expression in the 
brains of mice and humans. A thin slice of lung tissue 
is marked with a probe for a specific gene, and cells 
that contain that gene transcript show up with a dark 
purple marker. A gene could potentially have multiple 
different probes, each performing differently, and the 
RNA sequence for each probe must be tracked. The tissue 
specimens and the images produced need to be tracked 
along their metadata, and there may be multiple version 
of an image. Images and their metadata are collected at 
two locations, first to an account on CyVerse’s BisQue 
online image viewer (Kvilekval, Fedorov, Obara, Singh & 
Manjunath, 2010). Once image data have been inspected, 
cleaned, and approved, they are sent to a LungMAP data 
coordinating center, which makes them publicly available 
at www.lungmap.net. At the moment, the project has 
collected ~20,000 images, 12,000 of which are publicly 
available. The data curator was concerned with managing 
thousands of images and related metadata so that they 
could be properly referenced in a publication but could 
not decide on a single hierarchy under which to organize 
them. Through modeling and using IDS, the data could 
be organized under the entities identified during data 
modeling (specimens, probes, or genes) for purposes 
of creating meaningful and manageable data subsets. 
Relationships between entities could be maintained, and 
researchers could choose to explore and provide DOIs to 
subsets based on any of the entities and their relationships.

The other test cases that served to generate 
requirements included genetic variation in rice (Duitama, 
2015; Duitama et al., 2015), soil microbial community data 
from the National Ecological Observatory Network (Kao, 
Gibson, & Rachel, 2012), and the 1KP project, the first 
project to sequence 1000 plant genomes (Gitzendanner et 
al., 2018; Matasci et al., 2014).

Task 2: A Generic, Extensible Data Model
For IDS, we needed a data model that encompassed 

the lifecycle of genomic research data and specified the 
processes, material entities, and data involved at each 
stage. The data model serves as the basis for organizing 
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data and metadata in all projects, so that users can track 
their data in a sensible manner, query for particular data 
files (e.g., which specimen was the source, or which 
process generated the output), and create custom subsets 
of the dataset. We began the project designing an all-
encompassing genomics data model, but as we worked 
through our test cases, we realized that this model could 
be extended indefinitely with new processes and data 
types as the field of genomics grows and changes. Adding 
every possible research workflow variation to the model 
was not only beyond the scope of IDS, but was redundant 
with ontological efforts to describe biological data (Smith 
et al., 2007).

Our solution was to devise a generic data model to 
accommodate all our test cases and many more. Our 
generic data model (Fig. 1A) has three key components: 
1) processual entities, which include things such as 
collecting specimens, carrying out assays, and analyzing 
data; 2) material entities such as physical specimens, 
reagents, and probes; and 3) data entities, including both 
individual data objects and datasets. We include a project 
entity as the umbrella under which the other entities 
are grouped. Processual entities link material and data 
entities in a graph, through input and output relations. 
Instances of such entities constitute different stages of the 
research process.

Using the generic model as a template, custom types 
of genomic projects can be represented based on the 
specific entities used during research and by their data 
management needs. Correspondence between the generic 
data model and the custom ones is shown for the maize 
methylation project (Fig. 1B) and for the HT-ISH project 
(Fig. 1C). The test case descriptions in Task 1 and the 
project-specific models drawn by the researchers are used 
to determine which entities need to be instantiated in IDS 
for which we will need to create metadata, and for which 
entities or groups of entities we need to provide identifiers. 
As illustrated in the figures, the positive evaluation of this 
task was achieved when we verified that the research 
processes of our use cases mapped to the generic model.

Task 3: IDS Web Interface and Architecture
We developed a web interface to support identity 

functions using Django to build the front end, the Agave 
APIs (Dooley, 2012) for web services, and a MySQL 
database to implement the generic data model and gather 
metadata (Fig. 2). Through the course of our project, 
we changed technologies and methods in response to 
research needs. Here, we report on the technologies that 
provided the most successful outcomes, noting that they 
may change in the future in lieu of new advancements. The 

Agave APIs provide a set of web services for managing and 
analyzing data, allowing users to register remote storage 
systems for storing and interacting with data, as well as 
HPC systems for remote data analysis. A system in Agave 
represents a server or a collection of servers that can be 
physical, virtual, or exposed through a single hostname 
or IP address. Systems are identified and referenced in 
Agave by a unique ID. The first iteration of our interface 
was used to implement the maize methylation test case 
and the second for the HT-ISH test case. Following are the 
functionalities we developed.

Specimen 

Project 

Alignment 

100 BP 
tile file 

Sequencing Analysis 
(methylation) 

fastq file BAM file 

isPartOf isPartOf isPartOf 

hasInput hasOutput hasInput hasOutput 
hasInput hasOutput 

isPartOf isPartOf 

Material 
entity 

Project 

Process 

Data 
entity 

OR 

hasInput hasOutput 

isPartOf isPartOf 

isPartOf 

Specimen 

Project 

HT-ISH 
process 

isPartOf 

Image file 

Probe Chunk 

hasInput 
hasOutput 

isPartOf 

isPartOf 
isPartOf 

isPartOf 

A. 

C. 

B. 

Figure. 1. (A) A generalized data model for Identifier Services (IDS) 
that describes the entities in a research project. Projects have as 
parts processes, which have either material or data entities as 
inputs and outputs. Actual research projects adapt this model to 
their specific needs. (B) For the maize methylation test case, a 
project consists of three processes (sequencing, alignment, and 
analysis), one type of material entity (specimens), and two types 
of data entities (BAM files and 100BP tile files). (C) For the high-
throughput in situ hybridization (HT-ISH) test case, information is 
recorded about a single process type (HT-ISH), which has two types 
of material entities as input (chunks and probes) and one type of 
data entity as output (image files).
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3.3  Project Creation and Data Model Input

In IDS, data are organized by project, and projects are 
defined by an investigation type based on their custom 
data models and metadata. Users create projects, which 
then become the project’s landing page, and create one or 
select an existing investigation type. Our investigation type 
test cases included genomic sequencing, methylation, and 
imaging genomics. Investigation types can be reused by 
multiple projects, but each project is unique. For a project 
that defines the process of sequencing, with specimens 
as input and sequence data files as output, every unique 
specimen, sequencing process, and data file gets a UUID. 
The IDS database stores the UUIDs, metadata associated 
with them, and the relationships among entities based 
on the investigation type’s data model. There are two 
ways for users to customize the generic data model. First, 
users can create a project interactively through the web 
interface and label the generic entities to correspond to 
the specific processes, materials, or data used in their 
research (Fig. 3A). As they label entities, they also define 
the metadata needed to describe them (e.g., specimen id, 
species, and collection location for specimens, Fig. 3B). 
To encode relationships among entities, users select what 
input is related to what output for each instance (Fig. 3C). 
This method is useful for relatively small projects like the 
Maize methylation project. The second way is for users to 
configure an investigation type by creating a YAML file 
(2009) that defines the entity types, their corresponding 
metadata, and relationships among entities (Supplemental 
Document 1). Users then upload the YAML file via the 
IDS portal (Fig. 4A). This method is useful for large-scale 

projects whose data model is fairly stable, as creating the 
YAML file requires some level of coding ability. Once a 
project is created, users can upload a single spreadsheet 
with all the metadata for the project as well as the 
locations of the data files (Fig. 4B). IDS then ingests the 
information into the database that automatically triggers 
Agave for registration of the data files (refer to the Data 
Registration section). This bulk registration and metadata 
upload method was used with the HT-ISH test case during 
which the curators gather detailed metadata about each 
image.

3.4  Data Registration

IDS does not store data but rather allows researchers 
to manage all their data from a central location. This 
is accomplished through registration, in which users 
supply the location of the data which may be stored at 
multiple locations including open repositories, cloud 
services, and data centers. IDS automatically fetches 
the files, calculates checksums in an HPC system, and 
associates each checksum with the UUID of the registered 
file. Checksums are presented in the user’s dashboard, 
along with the project’s metadata and in relation to the 
corresponding entity (Fig. 4D). For IDS to access files at 
locations that require authentication, users must first 
register the systems with Agave, so that IDS does not need 
to handle users’ credentials for external systems. To work 
with Agave, storage systems must be accessible through 
one of several methods (grid ftp, sftp, scp, or ssh) and have 
open ports available for the IDS IP address. We tested this 
option with the Corral storage resource and the CyVerse 
Data Store. When data are available via a public download 
URL, IDS can register them without authentication. To 
demonstrate how files can be registered from repositories 
that serve data via their own APIs, we built an application 
that is executed using Agave to register data from NCBI’s 
SRA. In the case of HT-ISH, bulk registration was useful to 
evaluate differences between manual data recordkeeping 
and what is actually stored. When registering a set of 
239 images noted in the spreadsheet file provided by the 
curators, we verified that only 223 of the recorded images 
were on CyVerse BisQue, allowing to identify completeness 
and consistency between what is published in a repository 
and the researcher’s recordkeeping system. This method 
works well but has the limitation that different code 
is needed to access each repository or storage system, 
limiting its generalizability and sustainability.

Agave 
Tenant 

Agave 
APIs 

... 
HPC 

System 

Public Cloud 

identifierservices.org 

IDS Web 

Metadata 
API 

Systems API 

Files API 

Apps API 

Jobs API 

Data 
Repository 

Data 
Repository 

Data 
Repository 

1. User registers repository(s) 
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3. Data app pulls data 
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high performance 
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Services Events 

Storage or 
execution systems 
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Figure. 2. IDS system architecture. Users interact with the IDS 
services via a web front end to register files and metadata. These 
interactions trigger actions by the Agave APIs such as fetching data 
from a repository and moving it to an execution system where a 
checksum is calculated. New metadata are pushed back to the IDS 
database by Agave and are visible to users via the web front end.
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3.5  Model-based Queries, Dataset Creation, 
and Publication

We developed a virtual project configuration method that 
allows users to create subsets of data in a project based 
on their defined data model and metadata values. Having 

provided the metadata as explained in data registration, 
users can query the IDS database in the interface by any of 
the entity labels and or metadata fields in order to decide 
what a “subset” is. Because the relationships between 
entities and metadata expressed in the custom data 
model are maintained, the query result can be graphically 
represented as multirelational. Information about all 
the files in the subset is also provided. Once a subset 
is created, the user can request a DOI for it through an 
automated pipeline using the EZID API (n.d.). Metadata 
for the identifier (e.g., title, creator, date) are automatically 
pulled from the project description. The user then verifies 
or edits the metadata, and the subset receives a DOI, 
which is printed on the landing page. This virtual project 
configuration exists in IDS and may or may not reflect 
the organization of the files on the system where they 
are stored. Because files are registered and their location 
is established, IDS can use Agave to conduct any of the 
needed identity functions on the actual, remotely stored 
files. Our evaluation with the HT-ISH test case allowed us 
to build different data subsets. This is particularly useful 
for large datasets whose structure and relationships can 
be identified through the graphical representation. For 
example, we queried for data containing all image files 
that were derived from a probe for a certain gene to create 
a set and queried for all files from a single specimen. 
Results of the queries and the resultant representation 
were successful as exemplified in Fig. 4C.

Tasks 4 and 5: Implement Automated Location and 
Integrity Functions

During research and beyond, data may be moved 
from one storage resource to another, resources may 
be decommissioned, data content may be changed 
intentionally or not without notifying all team members, 
and data may get corrupted. We developed functions to 
check that registered data are where they were expected, 
and to calculate checksums over time and report back to 
IDS for comparison of results. In digital repositories where 
files are not supposed to change, checksums are used at 
ingest to establish the integrity of the transfer and the 
authenticity of a file. In IDS, this function is powered by 
an Agave app that fetches the file/s, calculates checksums 
in the HPC resource Wrangler (Jordan et al., 2015), and 
adds the new checksum and date verified to the file’s 
metadata in the database and on the project’s landing 
page (Fig. 4D). If the file is not present at its registered 
location or the checksum does not match the previous 
one, a warning is provided to the user who will have 
to resolve the origin of the inconsistency. Ideally, this 
service should be scheduled to run at regular intervals 
and produce a continuous report. Depending on the 

correspond to the specific processes, materials, or data used in their research (Fig. 3A). As they 

label entities, they also define the metadata needed to describe them (e.g., specimen id, species, 

and collection location for specimens, Fig. 3B). To encode relationships among entities, users 

select what input is related to what output for each instance (Fig. 3C). This method is useful for 

relatively small projects like the Maize methylation project. The second way is for users to 

configure an investigation type by creating a YAML file (2009) that defines the entity types, 

their corresponding metadata, and relationships among entities (Supplemental Document 1). 

Users then upload the YAML file via the IDS portal (Fig. 4A). This method is useful for large-

scale projects whose data model is fairly stable, as creating the YAML file requires some level of 

coding ability. Once a project is created, users can upload a single spreadsheet with all the 

metadata for the project as well as the locations of the data files (Fig. 4B). IDS then ingests the 

information into the database that automatically triggers Agave for registration of the data files 

(refer to the Data Registration section). This bulk registration and metadata upload method was 

used with the HT-ISH test case during which the curators gather detailed metadata about each 

image. 

A. 

B. 

C. 

34hksfdi-223u57980234-34 

 Illumina HiSeq 2500 

 Illumina 

 sequencingb73-3 

 Jawon Song 

 
Figure. 3. Manual creation and entry of a project using a web 
interface. (A) Users can create a project directly in a web interface 
that is preconfigured to genomic sequencing projects. Users 
interactively label the entities as processes (i.e. sequencing, 
assembly, analysis), specimens, or data used in their research. 
(B) As they create labeled entities, they also define the metadata 
needed to describe these entities, in this case, corresponding to 
the standard metadata required for submission to National Center 
for Biotechnology Information (NCBI). The URI/GUID field in this 
example contains the UUID assigned by Identifier Services (IDS). 
(C) To encode relationships among entities, users manually select 
what input is related to what output for each instance. In this case, 
the sequencing process has as output a FASTQ file from the NCBI 
Sequence Read Archive (SRA).
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system that serves the files, size and number of files, and 
whether computations are done sequentially, checksum 
calculations can be network and throughput intensive. A 
test with 223 images took 15 minutes to check locations, 
compute checksums, and register files serially. When the 
task is properly distributed to many nodes (parallelized), 
completion time can be reduced to one-tenth of the serial 
execution time. Future implementations should also 
allow checksum comparisons of more than two copies of 
the same file in multiple locations. These functions are 
complemented by task 6.

Task 6: Implement a Data Content Comparison Function
This task considers differential content as an identity 

attribute. While a checksum comparison can determine 

if two files stored at different locations are identical, it 
cannot determine that two nonidentical files have similar 
content. For example, many genomic researchers will 
create a genome assembly file and store it locally. When 
they publish their sequence data to SRA, it takes the raw 
reads and reassembles the genome according to its own 
pipeline, so the local copies and the public file will not 
have the same checksum. Still, for all purposes, these are 
two instances of a same work. Likewise, two collaborators 
in a project may each have a copy of a file, but one would 
have added some additional header information, leaving 
the rest of the content intact. Losing track of files and of 
their changes is very common when working in distributed 
environments and large datasets, and using the sequence 

has the limitation that different code is needed to access each repository or storage system, 

limiting its generalizability and sustainability. 

 

A. 

D. 

C. 

B. 

 
Figure 4. Bulk project creation and metadata registration. (A) Users configure an investigation 

by uploading a YAML file that defines the entity types, their corresponding metadata, and 

relationships among entities. (B) Projects are created based on the investigation type. Users 

upload a single spreadsheet with all metadata for the project as well as the locations of the data 

files. Identifier Services (IDS) then ingests the information into the database and automatically 

triggers registration of the data files. The IDS web portal then displays the project data in a graph 

based on the specified data model (inset). (C) Using information in the model and database, 

users can create datasets via query. In this case, the query is searched for all images derived from 

the probe for gene Ptprm. This query yields a dataset of 18 files, structured according to the data 

Figure 4. Bulk project creation and metadata registration. (A) Users configure an investigation by uploading a YAML file that defines the 
entity types, their corresponding metadata, and relationships among entities. (B) Projects are created based on the investigation type. 
Users upload a single spreadsheet with all metadata for the project as well as the locations of the data files. Identifier Services (IDS) 
then ingests the information into the database and automatically triggers registration of the data files. The IDS web portal then displays 
the project data in a graph based on the specified data model (inset). (C) Using information in the model and database, users can create 
datasets via query. In this case, the query is searched for all images derived from the probe for gene Ptprm. This query yields a dataset of 
18 files, structured according to the data model. (D) Users can view the details of any file in a project and do location/integrity checks. The 
resulting checksums are displayed (green oval), and if they do not match, or the file is not where it is supposed to be, an error is reported.
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comparison tool Blast for verification is inefficient. We 
developed a workflow for content comparison of genomic 
sequence data, described in (Xu et al., 2016), and applied 
it to three common scenarios found in genomics data 
management. These include: a) copies of a dataset stored 
in different repositories with metadata and content 
discrepancies, b) two seemingly identical components 
of a dataset stored and published that show content 
differences (this was tested with the maize methylation 
sequencing files), and c) two published datasets with 
similar metadata that show significant content differences. 
In all cases, researchers were not sure of why and what 
had changed, and the existing metadata for some of the 
files were not enough to make informed decisions.

Our algorithm detects content differences in 
sequencing files, first by comparing the unique identifiers 
that precede each sequence and then the sequences 
themselves. Each of these content elements is considered 
an identity attribute. The method allows identifying 
discrepancies between the files stored at different 
locations. Because content-based comparisons can be 
computationally expensive, an important requirement 
of this function is scalability. We used the Agave API to 
transfer data to the Wrangler HPC resource. To provide 
a point of reference, comparing a pair of files of ~3 GB 
each including up to ~19,000 pairs of identifiers and 
sequencing records using this method took less than 2 
minutes (2016).2

An important goal of this task was to convey 
information for users to understand the nature of 
the discrepancies. This information will help them 
make decisions about the files’ provenance, enhance 
metadata, and decide how to assign DOIs. However, 
there are challenges in reporting the results of large-scale 
comparisons, as the amount of differences identified 
by the algorithm can be of the same order (tens of 
thousands) of the sequencing records being compared. 
After consulting with our collaborators, we decided on a 
report consisting of three layers of information including 
a) statistical summaries of the results, b) examples of 
pairs of sequencing records randomly sampled from each 
compared file, and c) the complete copy of the results 
organized by identical sequencing records, non-identical 
ones, and records missing in one of the files. With this 
information, users were able to infer the reasons for the 
differences and whether the files could be considered 
the same work or significantly different. For example, 

2  The results of this task were published as a conference proceeding 
at DOI: 10.1109/BigData.2016.7840987. Readers can refer to this 
publication for complete narrative, results, and evaluation.

the comparison of two maize methylation sequencing 
files, one stored in Corral and one in SRA, showed that 
by mistake an untrimmed file was submitted to SRA; the 
researchers considered that the difference between both 
was not significant. Comparisons can be repeated over 
time to continuously manage the identity of evolving data.

Task 7: Evaluate IDS from the User’s Perspectives
We used the test cases and a focus group to evaluate 

researchers’ understanding of identity in lifecycle data 
management, how useful the functions developed by 
IDS were to them, and to estimate whether or not they 
would adopt them. Researchers affiliated to each test 
case guided us throughout development by providing 
extensive feedback on what was needed to support their 
research and by testing. In the Maize methylation test 
case, the team was able to attain a complete record of the 
dataset and its current identity status, including the files 
stored in Corral and the sequencing files at SRA. Creating 
meaningful subsets based on multiple relevant identity 
attributes was the main takeaway for the HT-ISH project 
curator.

Before the end of the project, we conducted a three-
segment focus group with five early career biologists. In the 
first segment, we asked the researchers to draw their data 
workflows to verify that they would be able to customize 
a generic data model in IDS. Next, we demonstrated IDS 
identity functions corresponding to tasks 2, 3, 4, and 5. 
Task 6 was presented but not demonstrated. Finally, we 
conducted a semi-structured discussion to assess how 
well users grasped the utility of the data model and the 
identity functions.

Following the modeling method described in Task 2, 
we asked researchers to draw their workflows, which they 
completed in the allotted time. After we demonstrated 
IDS, all saw the utility of modeling their workflows 
to customize the generic data model for organizing, 
describing, relating, querying, and sub setting their 
own data. All participants appreciated the services for 
checking identity across time, especially those facing 
the challenges of managing distributed datasets across 
many collaborators. The same researchers could see 
the immediate utility of the checksum and content 
comparison methods. All researchers became aware of the 
work involved in maintaining metadata throughout the 
project, which many do not experience until they prepare 
their data for publication. Although it was not the original 
purpose of IDS, researchers wanted to see the services 
integrated with workflow managers. This suggests that 
IDS might be more adopted if integrated not only with 
repositories that publish data but with infrastructure used 
for analyzing data (e.g., CyVerse or Galaxy).
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There were also some points of confusion. For 
researchers with less bioinformatics experience, it was 
at first difficult to grasp that IDS does not store data but 
rather metadata, while the data remain in various remote 
locations. Other doubts were at what point of a project 
lifecycle IDS would be used, and how projects and data 
would be versioned over time.3 Assessment of the overall 
value added by IDS varied depending on each researcher’s 
project. Scientists working on small data projects saw little 
advantage over their current method of managing data on 
their personal computers, whereas researchers working 
on big distributed data projects with extensive metadata 
felt that the IDS services would adequately make up for 
any additional effort involved.

4  Conclusions
Current infrastructure for life sciences data management 
does not fully support the data lifecycle. In general, 
scientists manage active data as part of their research, 
and once they publish it, they lose control of their dataset 
within an institutional repository. From the other side, 
institutional repositories just manage a static copy of data 
and do not account for evolution of the project outside 
the repository boundaries. As a result of these contrasting 
practices, data often remain siloed and unaccessible – not 
FAIR. The goal of this research was to experiment with 
identity functions to manage the full lifecycle of genomics 
data. For this, we researched the conceptual and technical 
state of the art of scalable identity functions through a 
prototype and using real genomic data test cases. We also 
evaluated users’ perspectives of such functions through 
a focus group. In the process, we found solutions to 
challenges and identified gaps that must be overcome in 
order to advance in the space.

The difficulty of managing datasets that contain many 
hundreds to thousands of files is a problem that researchers 
and data managers are very concerned with. Traditional 
hierarchical folder structures and meaningful file names 
are too fragile for managing large, distributed data 
collections, and applying metadata to many files can be 
extremely tedious. The IDS generic but flexible data model 
combined with bulk registration of data and metadata 
allows more automatic and thus efficient management of 
large datasets as the first step to continuously track their 
evolution over time through identity functions. In the 

3  We did not prototype versioning as many repository systems have 
that problem already solved. See the DataVerse Project at https://
dataverse.org/.

process of developing these functions, we learned that 
we needed better graphical interfaces for users to interact 
with larger datasets. This led to prototyping functions 
to query, subset, and represent complex relationships 
between dataset components. Further research and design 
are required to ease the creation of custom data models 
and facilitate data management and understandability 
via interfaces as well as testing the user experience.

A key feature of this project is that data remain 
distributed across many locations and that teams 
working remotely can manage them using IDS. In order 
to perform identity tasks such as content comparison 
or checksum calculations in bulk, the data have to be 
moved to an execution system with large computing and 
throughput capacity. Bandwidth remains a significant 
limitation. To transition IDS to production, we need 
to test grid/distributed transfer protocols within the 
storage/repositories, IDS, and Agave. In addition, we can 
work toward scaling through further parallelizing the 
tasks. Scheduling remote open-science and shared HPC 
resources where computing takes place will need to be 
adjusted to scale workflows and improve run times.4

To perform identity functions on data stored in 
repositories, IDS must use the web services that are unique 
to each repository. Access to data by IDS is problematic 
for many repositories, a few of which provide a direct link 
to data files. While the security concerns associated with 
providing direct anonymous access to data are understood, 
current services inhibit distributed data management and 
access. A set of shared APIs that let repositories register as 
storage systems with a service like Agave would diminish 
this problem.

Through IDS, we gained insight into what identity 
means for researches and its potential for data 
management. We realize that projects are idiosyncratic 
and that it is difficult to generalize modes of identity 
functionality. Providing the opportunity to customize 
a generic data model is a method to sort this difficulty. 
To go beyond the notion of identifying individual files, 
something that is practiced consistently by biology 
researchers, we tested applying labels to all entities in a 
project to indicate the provenance of the different dataset 
components. We learned that identifiers gain and lose 
functionality over time in a project, and it is rare that a 
single type will serve over the entire lifecycle. Following 
archival principles, we strengthen the concept of identity 

4  Use of open HPC resources implies setting up allocations and 
adapting to specific runtimes that allow many users to share the 
resources efficiently.
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by using a combination of identity attributes and by 
offering the possibility to assign DOIs.

Finally, the ability to constantly update the 
metadata, regardless of where data are located, is a major 
shortcoming of current infrastructure. For example, it is 
difficult to link new derived datasets or correct metadata 
and having the corrections propagate to related files 
within their respective systems. The need for mechanisms 
that can push and pull metadata before, during, and 
after publication, while controlling for different levels 
of trust in relation to systems where data are published, 
is a key gap. In our research, we envisioned a system 
that allows multiple agents managing open data in a 
distributed environment. This necessarily entails opening 
gates, as well as coordination and trust, indispensable to 
postcustodialism. Identity functions take care of tracking 
evolving data in a way that assures their reliability and 
continuous maintenance of provenance. The reality 
of open, interoperable data cannot come to fruition 
until some of the technical mechanisms we manage are 
better resolved. Our expectation is that the outcomes of 
this project will directly inform the development of CI 
supporting distributed data management across scientific 
domains.
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Supplemental Document 1. YAML file used to configure 
the IDS investigation type for the high-throughput in 
situ hybridization (HT-ISH) test case. The configuration 
file defines types of entities used in the investigation 
(specimen, chunk, probe, ISH process, and image), how 
they map to entities in the generic data model, metadata 
elements for each entity, and relations among entities, 
including cardinality of relations. Value types and 
choices of values may be defined for metadata attributes. 
Which metadata attributes to display in the portal is 
configurable.
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