
Data and Information Management, 2019; 3(1): 18–25

Case Study Open Access

Will R. Thomas*, Benjamin Galewsky, Sandeep Puthanveetil Satheesan, Gregory Jansen, 
Richard Marciano, Shannon Bradley, Jong Lee, Luigi Marini, Kenton McHenry

Petabytes in Practice: Working with Collections as 
Data at Scale

https://doi.org/10.2478/dim-2019-0004
received August 2, 2018; accepted March 1, 2019.

Abstract: The emerging transdiscipline of Computational 
Archival Science (CAS) links frameworks such as Brown 
Dog and repository software such as Digital Repository 
At Scale To Invite Computation (DRAS-TIC) to yield 
an understanding of working with digital collections 
at scale for cultural data. The DRAS-TIC and Brown 
Dog projects here serve as the basis for an expandable 
distributed storage/service architecture with on-demand, 
horizontally scalable integrated digital preservation and 
analysis services.
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1  Introduction
In this paper, we design a system for incremental 
interactive learning of an annotated publishable corpus 
derived from an archival collection. Learning here is a task 
for both the archival institution and community organized 
around the archival collection and a machine learning 
(ML) pipeline which refines the annotation of the corpus.

Digitizing a subset of the paper records of the George 
Meany Memorial Archive hosted at the University of 
Maryland created images from boxes of the American 
Federation of Labor—Congress of Industrial Organizations 
(AFL-CIO) archived records central to organized labor’s 
participation in the Civil Rights Movement. Our task is 

to define a means to build an annotated corpus based on 
those images which can expand to incorporate additional 
images created through subsequent institutional and 
community digitization efforts and refinements of the 
model. In so doing, we see how Computational Archival 
Science (Marciano et al., 2018) can help theorize new 
relationships between communities and the memory 
institutions that serve them. We can see how we can bring 
computing to the data in a record in order to build deeper 
descriptions of it than would otherwise be possible, as 
well as facilitating recontextualization and incremental 
improvement in record description, and how we can scale 
storage horizontally as the number of images increases.

This paper is organized as follows. We review the 
literature to identify methods which can be placed in a 
pipeline to learn a corpus from images. We then describe 
how such a pipeline can be realized by building on 
infrastructure components from the Brown Dog and 
DRAS-TIC projects (these two projects are described in 
more detail below).

2  Background
We must weave together a number of concepts and 
methods from the literature to incrementally build an 
annotated corpus from archival records. These concepts 
are as follows:

–– treebank corpus annotation
–– relational lenses
–– document interpretation acts
–– weak supervised learning
–– convolutional neural networks
–– long short-term memory
–– bidirectional long short-term memory
–– multimodal long short-term memory
–– connectionist temporal classifier
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We can start with treebank corpus annotation itself, 
modeled after the Penn Treebank Corpus (Marcus, 
Santorini, & Marcinkiewicz, 1993). The Penn Treebank 
Corpus was built using an iterative process of classifying 
text by syntax (“tagging” words) and then creating syntax 
trees to relate words to a sentence-level syntactic structure 
(“chunking” or “bracketing”). Labels were initially 
assigned algorithmically and then refined through a hybrid 
process of manual label editing and revised algorithmic 
models (Marcus, Santorini, & Marcinkiewicz, 1993).

Relational lenses (Bohannon, Pierce, & Vaughan, 
2006) are the next conceptual touchpoint. A relational lens 
is a view in a relational database so defined that updates to 
the underlying base relational variables in the view have 
their effects as clearly defined as does the query language 
defining the view itself; that is to say, the view is defined 
bidirectionally (Bohannon, Pierce, & Vaughan, 2006). The 
labels for syntax in a corpus can be viewed through such 
a relational lens; therefore, they can be updated through a 
relational data manipulation language.

Document interpretation acts (Bradley & Pasin, 
2013) capture the event of creating and updating of data 
through such a relational lens in an ontology describing 
documents in relation to the people and places in them. It 
links these various prosopographic entities such as named 
persons discoverable in text to the means of finding them.

Weak Supervised Learning (Craven et. al., 1999) 
is a hybrid iterated machine-learning approach where 
document interpretation acts including both manually 
and algorithmically generated labels for testing and 
training data are combined to construct datasets for model 
training larger than those which would be available with 
manual labels alone.

Convolutional Neural Networks (CNNs) (LeCun, 
Kavukcuoglu, & Farabet, 2010) are modeled after 
mammalian vision, where invariant features of the visual 
environment that mark a significant event (such as the 
movement of a predator or prey across the field of vision) 
are recognized amid the range of incoming stimuli. Its 
function is to take a first pass at extracting features. It is 
attempting to recognize characters of text by recognizing 
the invariant features characteristic of letters in the words.

Long Short Term Memory (Hochreiter & Schmidhuber 
1997) was a solution to feedback/feedforward degrading 
to zero or infinity in neural network recognizers. By 
embedding the ability for signals to be remembered 
during processing, signals encountered during different 
intervals of processing can be processed together while 
mitigating the loss of information across the time span 
between them.

Bidirectional Long Short Term Memory (BiLSTM) 
(Graves, Fernández, & Schmidhuber, 2006) improves on 
the ability of LSTMs to connect arbitrarily temporally 
distant features by removing directional constraints on 
that connection. The context for any one feature need not 
be immediately adjacent to be recognized, but now can be 
features seen later contextualizing earlier seen features as 
well as vice versa. Here, this means that newly recognized 
words, tags, or relationships can provide guidance to 
resolve ambiguities in ones previously seen.

Multimodal Long Short Term Memory (Ren et. al., 2016) 
allows training across multiple recognizers to connect 
stimuli received at the same time and reinforce learned 
connections between them, so that a text recognizer and a 
relationship extractor can for example provide feedback to 
one another during training. As we will use this concept, 
we extend multimodal deep learning (Ngiam et. al., 2011) 
by considering a pair of recognizers which operate on 
simultaneous parallel inputs where both of those inputs 
are the same.

Connectionist Temporal Classifiers (CTCs) (Graves 
et. al., 2006) recognize the significance of an apparently 
insignificant interval by seeing that it is actually an 
interruption in a sequence as opposed to an empty space 
between sequences. It changes the loss function to classify 
these interruptions properly. In so doing, it maximizes the 
probability of recognizing that a sequence which has been 
broken into segments (extraneous spaces introduced by 
defects in imaging or hyphenization) is a unity.

Extant systems combine the CNN, multimodal 
BiLSTM, and CTC concepts into neural networks for 
speech recognition (Amodei et. al., 2015). In a speech 
recognition task, a word recognized at the current time 
can change the context of words already recognized, 
possibly to the point it changes the net’s understanding of 
what word was recognized. An extant system producing 
text representations from images was created by Dropbox 
to handle smartphone digitization and OCR of business 
records such as receipts (Neuberg, 2017). Applying this net 
to a text-processing task takes advantage of the analogy 
between hearing speech and reading text (Mattingly, 1972) 
in that both are attention-driven tasks with possibly long 
delays between events that change the understanding 
or internal representation of perceptions. It also takes 
advantage of the externalization of memory in writing; 
memory of an acoustic event (outside of phenomena such 
as an echo) is all one has to refer to if one is connecting 
something heard now to something heard previously, 
whereas for reading one can recreate the previous 
perception of a word on demand alongside accessing 
one’s memory of it.
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3  Case Study
We consider the feasibility of extending the digitization 
capability of an archival institution to enable community 
researchers to be part of it. Community researchers with 
access to this capability would be able to image records 
utilizing their smartphone cameras and help build novel 
interpretations of those records as part of a corpus.

We envision researchers encountering records to be 
added to the corpus while examining the contents of a 
folder. They send the browser on their smartphone to a 
page hosted by the memory institution which lets them 
capture an image of the record, along with identifying 
information such as collection name, box and folder 
information, and any notes. The page automatically 
captures date/time and SHA256 fixity information for the 
image. When the researcher hits send, a system hosted 
by the institution goes into action. It extracts text from 
the image, cleans the text up, and publishes it as a text 
representation for the record image. Such a capacity 
allows for incremental production of an annotated 
corpus to happen regardless of current batch digitization 
efforts and can include records which are otherwise not 
prioritized for the digitization by the institution.

We intend to build on components from projects 
hosted at the University of Maryland and University of 
Illinois at Urbana–Champaign, respectively. Maryland is 
the host of the Digital Repository at Scale that Invites 
Computation (Jansen & Marciano, 2016) or DRAS-TIC 
stack to deploy data repositories that scale out to billions 
of files on potentially thousands of commodity servers. 
DRAS-TIC employs a Django content management 
system (CMS) front-end over a Cassandra (Lakshman 
& Malik, 2010) storage cluster to enable collections to 
scale horizontally. The core of the architecture is the US 
National Science Foundation (NSF)-funded Brown Dog 
project, which is a partnership between the University of 
Illinois Urbana-Champlain and the University of Maryland 
(McHenry et. al., 2017). The objective of Brown Dog was 
to create Digital Infrastructure Building Blocks (DIBBs) 
as modules to power next-generation digital collections. 
These modules are discoverable services that can operate 
within a framework capable of powering parallel pipelines 
for ingesting, transforming, preserving, and recomposing 
digital records and surrogates. This repository platform 
provides a web interface and standard data storage 
application programming interfaces (APIs) enabling a 
Brown Dog workflow to scale as the volume of ingested 
data and the size of the collection scale.

Brown Dog is a data transformation service for 
understanding unstructured data by means of auto-

curation and indexing. It is built to help make sense of 
data that require access to a diverse set of software for 
processing. Brown Dog is a “super-mutt” of software that 
tries to leverage all available software tools toward auto-
curation (Padhy et. al., 2015). It also encourages sharing of 
data transformation tools. The software tools are exposed 
as services and are available to its users to meet their data 
transformation needs. Brown Dog is now past its beta 
release and is heading toward the 1.0 release. Brown Dog 
currently supports a wide variety of use cases (Satheesan 
et. al., 2018), and Computational Archival Science nicely 
fits into its collection of use cases.

Brown Dog can handle complex data file conversions 
between formats and can orchestrate sequences 
of conversions and extractions. Internally, these 
microservices are implemented as containerized Clowder 
(Marini et. al., 2018) extractors. Clowder provides a 
metadata extraction bus and a way to package external 
software. Brown Dog manages the complexities of extractor 
dependencies and configuration, where an extractor 
proves computationally expensive. Brown Dog manages 
overall throughput handle scaling of these extractors by 
deploying them in a cluster which dynamically scales the 
number of active processes on demand.

We are proposing neural net extractors not in the 
Brown Dog catalog; implementing them will require us to 
address the Brown Dog Software Development Kit (SDK) 
for creating new extractors. Implementing code can focus 
on specific recognition or transformation tasks and leave 
to the SDK the connections to Brown Dog for data reading, 
metadata writing, and scaling.

The collection being targeted here is the George Meany 
Memorial Archive, the largest single donation of archival 
material to the University of Maryland (University of 
Maryland, 2016). Records in the archive comprise multiple 
record groups capturing documents, publications, 
imagery, media, and ephemera. Of specific interest are 
the records related to the AFL-CIO Civil Rights Division, 
which were assessed for digitization under the aegis of the 
African American Digital Humanities (AADHum) Initiative 
at the University of Maryland. With funding from Mellon, 
a team was able to perform folder-by-folder assessments 
of individual documents from multiple record groups, 
identifying both types of documents and entities named 
within those documents.

The significance of the Civil Rights Division records 
lies in their close documentation of organized labor’s 
role in ending Jim Crow (the public and commercial legal 
structure of segregation and impunity for racist violence 
in the United States) as a partner of the Civil Rights 
Movement. The actual digitization is still in progress, so 

Bereitgestellt von  Wuhan University | Heruntergeladen  07.11.19 06:37   UTC



� Petabytes in Practice: Working with Collections as Data at Scale   21

record groups 1, 9, and 21 are the ones represented with 
surrogates. Materials within these record groups were 
picked owing to their box- and folder-level descriptions in 
the finding aid for the archive. A few hundred gigabytes of 
images of this material have currently been digitized.

In addition, this collection includes records in 
Record Group 20, which are records from the Information 
Department in the form of issues of the AFL-CIO News. 
This material was digitized by the University of Maryland 
and the digital surrogates produced are now hosted by the 
Internet Archive.

As per the permissions granted by the AFL-CIO, 
all of the records selected are publicly available for 
noncommercial use, so data for this project can be made 
publicly available. In order to reduce costs and make the 
implementation details open to the community as well, 
all the components in the architecture need to be open 
source.

4  Neural Net Training
The neural networks at the heart of the stack need to be 
trained in order to extract text well. Existing digitization 
efforts based on this collection provide a quantity of 
training data which will be needed for building and testing 
the outputs of the system. This existing training data come 
in two sets, a labeled image set and an unlabeled one.

The labeled image set consists of JPEG images produced 
by the University of Maryland with accompanying OCR 
text representations produced by the Internet Archive 
using ABBYY FineReader. These digital surrogates derive 
from records in Record Group 20, which are records from 
the Information Department in the form of issues of the 
AFL-CIO News. The OCR text representations are used 
as labels for supervised learning. In addition, the Penn 
Treebank-based NLTK (Loper & Bird, 2002) libraries 
will create labels for parts of speech (POS) tagging and 
chunking. All these labels will be stored in a materialized 
view in a PostgreSQL database attached to the Django 
CMS in DRAS-TIC.

The second set consists of JPEG images captured by 
digital cameras from the physical records in record groups 
1, 9, and 21. Imaging was performed by a contractor not 
otherwise connected with this work. Initial metadata 
collected for the surrogates include originating record 
group, collection, box, and folder number for the 
underlying physical record, filename and path assigned 
at the time of capture, SHA256 fixity information, and 
format information captured by the identity program in 
the ImageMagick suite.

We rely on Apache Spark (Zaharia et. al., 2016) to 
distribute the training of the machine-learning models. 
Training and testing data are stored in Cassandra, as 
Spark integrates with it as a persistence layer. Although 
Spark has an ML library (Meng, et. al., 2016), the neural 
net models need to be implemented using a library which 
can realize neural nets. SparkNet (Moritz et. al., 2015) 
enables the use of frameworks which can implement a 
CNN or LSTM network, and of the neural net libraries it 
enables, and Caffe (Jia et. al., 2014) has a Python binding.

We use Docker images as abstractions for computing 
power. For our purposes, we can consider these images to 
at base be Debian stretch GNU/Linux, although Ubuntu, 
using the same package manager as Debian, would work 
similarly.

We assume our collection consists of a set of data 
in heterogeneous digital formats. We will assume a set 
of Docker containers running Cassandra and forming a 
cluster. This cluster holds our collection data. We can call 
it the storage pool.

Basing the storage pool on Cassandra means that 
we can scale the pool horizontally, increasing the size of 
storage it can manage by simply adding more nodes.

We can take advantage of this horizontal scaling to 
add an analytic capability operating over the storage 
pool. To do this, we augment the Docker image used to 
host Cassandra nodes for the storage pool. Each container 
based on this new image will run Cassandra and will be a 
part of the storage pool, but in addition, each container 
will have Spark installed and listen on Spark’s port set so 
that it can join a Spark cluster. Just as we call a Cassandra 
cluster the storage pool, we can call a Spark cluster the 
analytic pool.

After installing Spark, we must install the 
SparkCassandra connector, so that a Spark node can 

Figure 1. Storage Pool. C = Cassandra 

Figure 2. Expanded Storage Pool.
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access data from the storage pool through the Cassandra 
node in its container. We must also install SparkNet and 
the Caffe ML library. The main Caffe source tree includes 
LSTM, which we need, but does not include a CTC (Graves 
et. al., 2006) loss function implementation. For that, we 
can rely on a fork of Caffe which does include a realization 
of CTC. The CTC in this fork implements the Warp-CTC 
method created by Baidu (Amodei et. al., 2015).

With SparkNet and Caffe with Warp-CTC installed on 
the analytic pool, we can define a neural net pipeline for 
that pool. The specific pipeline we will define is similar to 
the pipeline defined in the study by Amodei et. al. (2015) to 
transcribe audio. Transforming audio to text using ML not 
only needs to be able to have previously recognized audio 
affect the expectation of audio heard later; audio actually 
heard at a given moment can alter aspects of previously 
recognized audio. To do either, an LSTM is necessary, but 
to do both is beyond the capability of a unidirectional 
LSTM and a bidirectional LSTM is required.

There are three layers in the neural network 
implemented over SparkNet. These are as follows:

–– convolutional neural network
–– bidirectional multimodal long short-term memory
–– connectionist temporal classifier

The first layer is a convolutional neural net (CNN) (LeCun, 
Kavukcuoglu, & Farabet, 2010) which takes a first pass 

at extracting features. It is attempting to recognize 
characters of text by recognizing the invariant features 
characteristic of letters in the words. In so doing, it learns 
what otherwise would be hand-coded optimizations for 
an imaging system.

The second layer is a multimodal Bidirectional Long 
Short Term Memory (BLSTM) (Graves, Fernández, & 
Schmidhuber, 2006) that improves on that recognition 
by identifying likely words. The LSTM enables arbitrarily 
distant features within the area to impact on one another, 
so that context for any one feature need not be immediately 
adjacent to be recognized. The bidirectional aspect means 
that features seen later can serve as context for earlier-
seen features as well as vice versa. Here, this means that 
newly recognized words can provide guidance to resolve 
ambiguities in words previously seen.

The third layer handling the image regions is a 
connectionist temporal classifier (CTC) (Graves et. 
al., 2006). A CTC is trained to recognize interrupted 
sequences, such as  words which may have been broken 
into segments (extraneous spaces introduced by the scan, 
or hyphenization across a line break).

To train then only requires selecting a labeled subset 
of the data in the storage pool, subdividing that subset 
into training and testing data and issuing the command to 
train a model to the pipeline. Cassandra will manage any 
replication necessary to make that data available from the 
storage pool to the analytic pool.

5  Workflow
We envision the incremental accumulation of a corpus 
to be a distributed, parallel operation among multiple 
participants where there is no common calibration between 
the various cameras they are using as instruments. At any 
given time, one or more researchers may image a record 
from the collection. This image is submitted to a DRAS-TIC 
digital repository, assigned a UUID and a timestamp, and 
is stored as an object in Cassandra.

Capturing the image can be coordinated through 
HTML5 and a capable browser. A variation of the input tag 
can capture image data, and it will wait for the camera 
to take an image in the same way that more familiar uses 
of the input tag in forms wait until the tab or enter key is 
pressed to capture text.

DRAS-TIC invokes the extraction neural network 
pipeline through Brown Dog. Brown Dog sees the neural 
net layers in the insertion process as encapsulated by 
Python and packaged in a Clowder container which 
organizes their invocation. DRAS-TIC can trigger the 

Figure 3. Storage and Analytic Pools. C = Cassandra, S = Spark 

Figure 4. Storage and Analytic Pools with SparkNet. C = Cassandra, 
S = Spark, SN = SparkNet

Figure 5. Neural Net Layers
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Clowder container to commence processing at intervals; 
when it does, a group of ingested records will be put 
through the insertion process. This runs them through the 
neural net pipeline implemented using Caffe with Warp-
CTC across SparkNet. Each of these layers is progressively 
refining the view of the text within the ingested image.

The multiple outputs of the pipeline are a text 
representation of the image annotated with POS tags, 
chunked, and linked by relationship markers, all 
described as document interpretation acts. Brown Dog 
returns these to DRAS-TIC, which can store these outputs 
in its PostgreSQL database. The document interpretation 
acts organizing what is stored there by DRAS-TIC capture 
the classifications generated by the neural network along 
with manual or algorithmic corrections or amendments to 
them.

We envision the user being able to submit images as 
a batch process, meaning that in normal operation users 
will not wait for the system to finish processing one image 
before they capture the next.

6  Discussion
There are concerns with the training data, in that the 
images all went through QA as part of a digitization effort 
and will not be noisy enough to train for suboptimal 
images. Algorithmically generated noise – speckles, 
shadows, and skews – will need to be added to the data 
to simulate actual use conditions. The testing data did not 
all pass QA, which makes it more useful for encountering 
actual suboptimal images, but by the same token was 
generated as part of a professional digitization effort, so 
noise will need to be added to the testing data as well.

    In addition, the algorithmically generated labels for 
the training data derive ultimately from the work of the 
community building the Penn Treebank, and whatever 
biases are introduced by that community are currently not 
accounted for. This is an issue which must be addressed, 
as there is no assumption about a neutral point of view 
covering the corpus as a whole and hence the imposition 
of a point of view from a community outside of the one 
centering on our collection should be noted and possibly 
corrected for.

It is reasonable to expect parallel language constructs 
between the training data and test and actual data, due to 
the definition of the sets. There are 118 volumes of AFL-CIO 
newspapers with text, covering the same set of years as 
the actual data and produced by divisions of the same 
organization, and read by many of the individuals who 

had responsibility for producing the records in the actual 
data. The evolution of the corpus as the neural network 
training data labels better reflect the language model of 
the community will provide data on differences between 
this corpus and one built from text judged as “objective” 
by an editorial community such as the editors of the Wall 
Street Journal.

7  Conclusion
We have found support for the possibility of a 
system which can incrementally build an annotated 
corpus by learning, recognizing, and describing 
text representations, annotations, and relationships 
between words in images. There are no requirements for 
proprietary software solutions, and we can bootstrap the 
process by algorithmically transforming existing labeled 
data to create the training data for its neural layers. It is 
deployable as a set of Clowder containers on a Brown 
Dog server cluster and can integrate with the storage 
pool of a collection managed by DRAS-TIC. SparkNet 
simplifies both dataflows and deployment, as the Clowder 
containers can leave in-memory management of models 
and data to Spark and management of storage likewise 
can be the responsibility of Cassandra.

We can see here an example of how Computational 
Archival Science can help theorize new relationships 
between communities and the memory institutions that 
serve them by collaboratively constructing a corpus based 
on their collection using entirely open source and can be 
replicated by other institutions. It will be interesting to see 
how this system as it is prototyped and developed affects 
the perceptions of the institution and community vis-a-vis 
each other.
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